Evidence Table Rhythmic Auditory Stimulation and Gait Training Post-stroke Sarah Kauk October 2011

PICO: In adults suffering a stroke within the past 12 months is gait training with rhythmic auditory stimulation more effective than general gait training alone in improving symmetry of gait and Berg Balance scores?

Authors, Year, Publication	Title	Purpose and Design	Subjects	Intervention	Outcome Measures	Results	Conclusion/ Application	Comparison/ Analysis
Thaut MH, Leins AK, Rice RR, Argstatter H, Ken- yon GP, McIntosh GC, Volay HV, Fetter M. <i>Neurorehabilitation</i> <i>and Neural Repair</i> 2007	Rhythmic Audito- ry Stimulation Improves Gait More Than NDT/ Bobath Training in Near-Ambulatory Patients Early Poststroke: A Sin- gle-Blind, Ran- domized Trial	To determine if RAS has a positive effect on gait train- ing when com- pared to NDT/ Bobath training in subjects with hem- iparesis 2° to stroke. RCT	RAS N=43 NDT N = 34	Both groups 3x/week; 1x/day RAS: auditory cuing with gait training; amount decreased throughout session to encourage transfera- bility.	 Velocity (m/min) Stride Length (m) Cadence (steps/min) Symmetry (swing ratio) Measurements pre and post 	 Velocity ↑ Stride-length ↑ Cadence ↑ Gait symmetry ↑ 	RAS can posi- tively affect gait parameters in subjects with hemiparesis.	External cuing. Do not know if cuing was unilat- eral or bilateral cuing. Did not do a very good job describing specific inter- vention. Makes it harder to compare to other stud- ies.
Schauer M, Mauritz KH <i>Clinical Rehabilita-</i> <i>tion</i> 2003	Musical Motor Feedback (MMF) in Walking Hemi- paretic Stroke Patients: Random- ized Trials of Gait Improvement	To determine if MMF has a greater positive effect on gait than conven- tional gait training alone in subjects with hemiparesis 2° to stroke. RCT	N = 23 MMF Age 59±12 DPS 53 Cntl Age 61±12 DPS 67	15 sessions 20 min/day 5 days/week Insoles with sensors connected to portable music device. Speed of music directly controlled by gait of subject. Both groups received 45 min/day NDT/Bobath.	 Velocity (m/s) Cadence (strides/min) Symmetry deviation (%) Heel-on-toe-off distance (mm) Pre and post Measurements taken without MMF 	 MMF Velocity ↑ Stride-length ↑ Symmetry deviation ↓ Increased heel-ontoe-off ↑ Control Cadence ↑ 	MMF can posi- tively affect gait parameters in subjects with hemiparesis.	Need more description of intervention. Different from other studies. Audi- tory stimulus is dependent upon the subject's move- ment. Subject creates the timing instead of the cuing creating the timing. Ca- dence did not significantly increase for MMF; did for control.
Jeong S, Kim MT Applied Nursing Research 2007	Effects of a Theo- ry-Driven Music and Movement Program for Stroke Survivors in a Community Set- ting	To determine if and how music- based exercise program affects physiological, psychological, and social outcomes in subjects post- stroke. Also, a feasibility study. RCT	RAS N = 16 Age 58.0 ± 7.192 YPS = 5.437 ± 4.530 Cntl N = 17 Age = 62.2 ± 8.158 YPS = 7.294 ± 5.30	8 week community program; 2 hours/ week; stretching, singing, instructor- led exercise routines; repetitive movements coordinated with rhythms; upper and lower body; RAS home program	ROM affected side: shoulder flexion, ankle flexion, ankle extension, back scratch test, Profile of Mood States, Relation- ship Change Scale, Stroke Specific Quality of Life Scale Pre and post intervention measurements	 RAS Shoulder flexion ↑ Ankle flexion/ extension ↑ Flexibility ↑ Mood States ↑ Interpersonal relationship scores ↑ Cntl Ankle extension ↓ Upper arm flexibility ↓ 	Changes were statistically significant but small. Interven- tion seemed to prevent loss of function. RAS able to be imple- mented through community exercise pro- gram.	More detailed description of intervention needed. Much longer time post- stroke than most of the other studies; years vs days. Community based: individuals need to be more independent for this application
Thaut MH, McIn- tosh GC, Rice RR <i>Journal of Neuro-</i> <i>logical Sciences</i> 1997	Rhythmic Facilita- tion of Gait Train- ing in Hemiparetic Stroke Rehabilita- tion	To determine if RAS has a positive effect on gait train- ing when com- pared to NDT training in subjects with hemiparesis 2° to stroke. RCT	RAS N =10 DPS = 16.1 ± 4 Cntl N = 10 DPS = $15.\pm 4$	6 wks; 5 days/wk; 60 min/day RAS: auditory cuing with gait training; amount decreased throughout session to encourage transfera- bility.	 Velocity (m/min) Stride Length (m) Cadence (steps/min) Symmetry (swing ratio) Medial gastroc EMG Measurements pre and post 	 Velocity ↑ Stride-length ↑ Variation in medial gastroc EMG ↓ 	RAS can posi- tively affect gait parameters in subjects with hemiparesis.	Longer duration of study vs. other Thaut study. Do not know if cuing was unilateral or bilateral cu- ing. Did not do a very good job describing spe- cific intervention.

Authors, Year, Publication	Title	Purpose and Design	Subjects	Intervention	Outcome Measures	Results	Conclusion/ Application	Comparison/ Analysis
Hayden R, Clair AA, Johnson G, Otto D International Jour- nal of Neuroscience 2009	The Effect of Rhythmic Auditory Stimulation (RAS) on Physical Thera- py Outcomes for Patients in Gait Training	To determine ef- fect and feasibility of using RAS dur- ing gait training with subjects post- stroke. Wanted to determine dosage effect of RAS Cohort	Age 55-80 yrs 30 sessions w/ RAS N = 5 20 sessions w/ RAS N = 5 10 session w/ RAS N = 5	Toe-tapping to mu- sic. Walking without RAS. More toe- tapping. Marching. Walking with RAS.	 Single-limb stance Cadence Velocity Stride Length Time-Up-And-Go Forward Head Tilt Functional Reach Measured at sessions 1, 11, 21, 30 	 Single-limb stance Cadence ↑ Velocity ↑ Stride Length ↑ Forward Head Tilt	RAS is feasible and can posi- tively influence gait parameters. Still unsure about dosage effect.	Very little information about subjects given. Sim- ilar to other studies: con- ducted in inpatient rehab. Drop out was a problem. May not have been large enough N to show differ- ences between groups.
Roerdink M, Lamoth CJC, Kwakkel GK, van Wieringen PCW, Beek PJ <i>Physical Therapy</i> 2007	Gait Coordination After Stroke: Ben- efits of Acoustical- ly Paced Treadmill Walking	To determine the effect of incorpo- rating auditory stimuli w/ tread- mill training on the gait of subjects post-stroke. Cross-Sectional	10 subjects post- stroke Age = 46-78 yrs Months post- stroke = 3-104 9 healthy controls	3 trials at 3 different speeds without audi- tory cuing. 3 trials at 3 different speeds with auditory cuing.	 Stride frequency Stride length Stride time Step witdth Spatial asymmetry Temporal asymmetry Interlimb coordination 	 1st 4 gait parameters were different be- tween subjects post- stroke and controls Post-stroke w/ audi- tory cuing Spatial asymmetry ↓ Temporal asymmetry ↓ Interlimb coordina- tion ↑ 	Cuing had posi- tive effect on gait. Subjects post-stroke can adjust walking speed to match pacing even when faster or slower than comfortable pace.	Compared subjects post- stroke to controls. Then compared effect of audito- ry stimuli on both groups. Bilateral cuing via head- phones. Used treadmill instead of over-ground. More control over veloci- ty but treadmill may also have an effect. Longer time since stroke yet still an effect on gait.
Pelton TA, Jo- hannsen L, Chen H, Wing AM Neurorehabilitation and Neural Repair 2010	Hemiparetic Step- ping to the Beat: Asymmetric Re- sponse to Metro- nome Phase Shift During Treadmill Gait	To determine how subjects post- stroke adapt to phase shifts during treadmill walking with RAS. Cross-Sectional	N = 8 subjects post-stroke Age = 51-91 MPS = 9-108	Treadmill walking at comfortable speed w/ metronome matched to heel strike. 5 trials of 100 steps. 4 phase shifts during each trial. Subject asked to rematch heel strike to metronome.	 Average phase control (ms) Period control Limb symmetry (ms) 	Subjects took more time to adapt to phase shift when paretic side had to initiate com- pensation.	7 of 8 subjects post-stroke were able to adjust and match changes but needed in- creased time for compensation with paretic side.	Also a treadmill study and longer time since stroke than inpatient rehab stud- ies. Most of the subjects still had the ability to adjust gait to an auditory stimulus.
Roerdink M , Lamoth CJC, van Kordelaar J, Elish P, Konijnenbelt M, Kwakkel G, Beek PJ <i>Neurorehabilitation</i> <i>and Neural Repair</i> 2009	Rhythm Perturba- tions in Acoustical- ly Paced Treadmill Walking After Stroke	To determine the amount of auditory cuing that results in the best syn- chronization of heel strike to pulse. Also assessed how subjects compen- sate for phase shifts.	Subjects post- stroke N = 11 Age = 42.71 MPS = 4.65 Healthy controls N = 10	Session 1: Treadmill walking at comforta- ble speed w/o RAS Session 2: Treadmill walking w/ RAS. Given ipsilateral and bilateral. Session 3: Treadmill walking w/ RAS and phase shifts in RAS.	 Step length Step width Step time Step Symmetry Ability to adjust to perturbations: Accuracy Speed 	Subjects post-stroke: All gait parameters worse than controls. Bilateral cuing: both groups showed in- creased step width and better coordina- tion.	Subject post- stroke have more difficulty matching audi- tory information but show im- proved coordi- nation with bi- lateral cuing.	Treadmill study and long- er time since stroke than inpatient rehab studies. Showed impact of differ- ent amounts of cuing. Bilateral resulted in better coordination.

Abbreviations and Definitions

RAS = Rhythmic auditory stimulation; Cntl = Control Group; MMF = Musical motor feedback DPS = Days post-stroke; MPS = Months post-stroke; YPS = Years post-stroke Average Phase Control (ms): how far off the heel strike was from matching the pulse Period Control: "proportional asynchrony error from the target pulse" Limb symmetry (ms): comparison of time between heel strikes between paretic and non-paretic side