Rehabilitation Engineering Center

INTERDISCIPLINARY COLLABORATION BETWEEN UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL DOCTOR OF PHYSICAL THERAPY STUDENTS & UNDERGRADUATE ENGINEERING STUDENTS AT NORTH CAROLINA STATE UNIVERSITY

This presentation will cover...

- Interdisciplinary education
- Definition of rehabilitation research
- UNC-NCSU Rehabilitation Engineering Center, and:
 - How to get started
 - Role of a PT student
 - Project timeline
 - Additional opportunities

 First REC project: Developing a portable transfer board

What is interprofessional education?

- Some problems cannot be solved within a single profession—they require other areas of expertise²
- The essence of IPE is students learning with, from, and about each other in interdependent groups¹
- The process of becoming a professional is being socialized into the patterns of thinking and behaving required by your profession—IPE provides different, valuable viewpoints as you work with those in other professions¹
- IPE increases your personal insight, understanding, and skill¹

What is rehabilitation research?

- Research committed to the theme of "human function and rehabilitation" is based on the ICF model⁴
- The aim of this research is to minimize the experience of disability not just in individuals, but within groups and populations⁴
- Rehabilitation research is uniquely positioned to integrate and translate the advances of sciences into benefits for people⁴
 - Engineering focuses on optimizing a person's capacity
 - PT focuses on enabling the person in their immediate environment to achieve optimal performance

How can we make this successful?

- Collaborations are more effective when team members communicate about²:
 - Motivations for the project
 - Beliefs about science
 - o Definitions of appropriate data
 - Accepted research methodology
- Friendship and solidarity among team members is important for success²
- Engage in projects that have real-world application³
- Reflect as a group throughout the process to enhance efficiency and minimize conflict¹

What is the Rehabilitation Engineering Center?

• History

- Initiative of the College of Engineering at NCSU and the School of Medicine at UNC, formed in 2011
- A state technical assistance, education and research center that evaluates, designs, innovates, and promotes improved care and function for individuals with short and long term rehabilitation needs

Mission

• Improve quality of life, personal and work environments, and products through careful study, analysis, research, design and education of students and people with special needs.

What does the REC do?

- By combining the medical strengths of UNC and the engineering aptitude of NCSU, the REC serves to:
 - Cultivate, coordinate, and stimulate design projects between UNC and NCSU
 - Integrate the expertise of two disparate fields of medicine science and engineering
 - Cultivate innovative research between UNC and NCSU
 - Function as a clearing house for questions/problems concerning special physical needs with rehabilitation
 - Assist the state by stimulating technology transfer and economic development in a growing area within the field of biotechnology

What does the REC do?

• The REC stimulates, coordinates, and financially supports start-up collaborations, special projects, seminars, symposia, and research and education concerning rehabilitation

Co-Interim Directors

- Dr. Rick Segal at UNC
- Dr. Richard Wysk at NCSU

Who will you be working with?

- The REC facilitates rehabilitation engineering design projects through existing engineering courses
 - NCSU College of Engineering
 - Visit the NCSU College of Engineering website to find out about the various disciplines that you could work with
 - <u>http://www.engr.ncsu.edu/departments/</u>
 - Additional opportunities
 - ➤ Work with Duke biomedical engineering students in the fall semester: <u>http://bme260.pratt.duke.edu/</u>
 - Work with UNC biomedical engineering students in the spring semester: <u>http://www.bme.unc.edu/~rlg/rehabDesign/</u>

What are the differences between programs?

- In collaborations with NC State, products are typically developed for a larger population
 - A general need has been identified in a group of people, and a product that could be widely manufactured is designed and developed
- Projects at Duke and UNC are generally patientspecific
 - A need has been identified for a person within the Durham-Chapel Hill community, and a semester is spent designing that person a customized product

• PT students serve to put engineering students in contact with a patient or a patient need

- You have the clinical knowledge and patient access that the engineering students do not, while they have the design and engineering education that we lack
- The job of the PT student is to present a researched idea that is a definite need, and provide consultation and design input as the engineers design the product

How do I get started?

• Determine a need

- Is it something for a specific patient?
- Is it something for a group of patients?
- Is it something that could be improved in the clinic?
- Think about discussions with PTs, patients, other students, and clinical experiences you have had
- You can work with a classmate together on a project- is there anyone in your class with similar interests who may know about a need?

What do I do if I don't have an idea?

- Don't worry! Our faculty and other therapists know patients with specific needs
- There are many existing ideas that could benefit someone, they just need specific attention and your skill set
- If you have a particular patient interest, contact a professor with a similar focus, or a CI in a similar setting

So you've got your idea!

• Market research

- Does this product or something similar currently exist?
- If so, how much does it cost?
- Is it manufactured by multiple companies?
- Is it widely available?
- Determine that this product is worth producing
 - It will benefit others
 - It is an improvement to existing technology
 - It is a novel idea that has not yet been developed

How can I find out more information? • Visit the REC website at <u>http://rec.bme.unc.edu/</u> Get in touch with Lisa Johnston at UNC

- o lisa johnston@med.unc.edu
- **o** 919-843-5723

What can you expect as a participant in the REC?

- You (DPT student(s)) will be working in conjunction with 1-3 undergraduate engineering students on their senior design projects
- Weekly meetings (in person or teleconferencing) with director and team as project progresses
- Frequent communication with your team
- Consulting faculty, clinical instructors, peers for input as design progresses

• Formulate idea and get in touch with appropriate people during **fall semester**

- Submit a proposal abstract to be distributed to senior engineering students
 - Brief outline of idea, purpose, patient population, and desired outcome
 - This allows the engineering students to select a senior design project that interests them

 Initial meeting with team will be during January of spring semester

• Be very clear about your idea and your thoughts about its implementation

• Come prepared and ready to answer questions about its use, availability, and be able to defend the need for it

- You are going to be only person providing the clinical and medical perspective
 - Engineering brains and PT brains work very differently
 - Don't be afraid to voice your opinions or concerns they are relying on your knowledge and patient experience to formulate the best possible product
 - Many great ideas happen as a result of these different viewpoints coming together and collaborating

• Table of requirements (late January)

- Table of all possible options for the product
- o Utilize this to narrow down to specific design parameters

Brainstorming (early February)

- Once idea has been derived from table of requirements, group can brainstorm about potential designs, features, design attributes, materials, etc
- Collect the results from the brainstorming and group similar ideas together

Select 1-3 options and determine specifications (mid-February)

- Each engineering student can begin thinking about one option
- PT student will provide input about item feasibility and requirements

- Pre-prototype (late February)
 - Miniature or non-functional prototypes developed as a starting point
 - A physical example of an idea

Failure mode and effects analysis (FMEA) (early March)

• Engineering students find out product limits and consider all potential modes of failure

- Prototyping and failure testing (mid March)
 - Build actual prototype and test it to failure
 - Multiple prototypes will likely be developed

- Product development (late March)
 - Incorporate results of prototype testing to develop product
- Producibility (late March)
 - Throughout process, consider producibility of the product as you decide on final materials and development process
 - Could this easily be replicated?
 - If it is a device for general use vs specific to one patient, is it something that a manufacturer would feasibly develop?

• Final product and poster (April)

- Produce final, functional product
- Produce any required posters or write-ups
- Present at REC symposium

Additional Opportunities with the REC

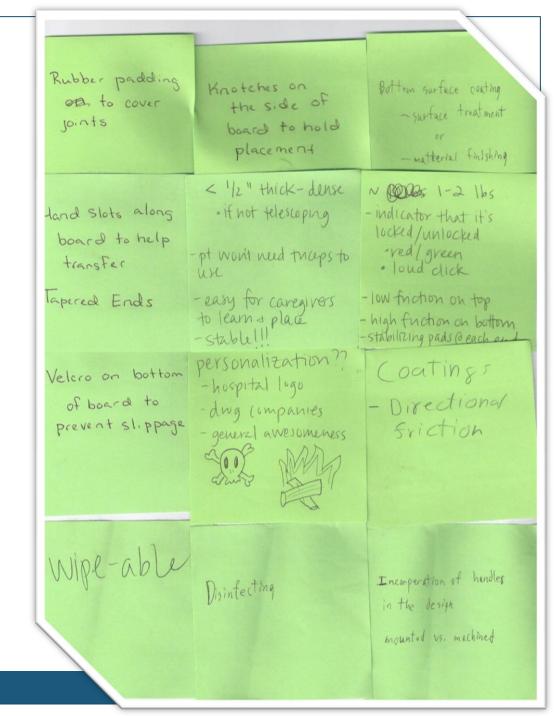
- Potential to develop poster for presentation at Rehabilitation Engineering Symposium held in April
 - Poster fair for people involved with the REC
 - Includes faculty who have received grants, other undergraduate students
- Potential to present at APTA's Combined Sections Meeting
 - Submission deadline for abstracts is in early April—consider this as development progresses
 - Submission deadline for posters in late May

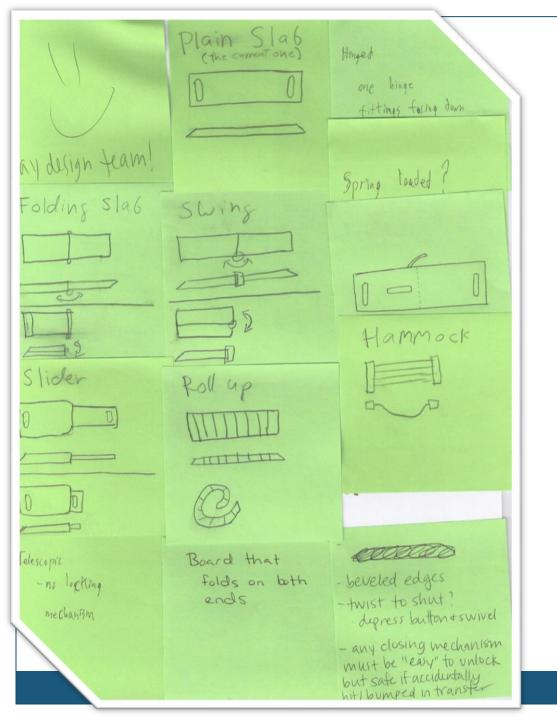
Personal experiences with the REC

• First project through REC was development of a portable/collapsible transfer board

• Idea came on 3rd clinical working in inpatient rehabilitation with SCI patients

• Current boards large and cumbersome, heavy, difficult for patients with limited motor function to place and transport

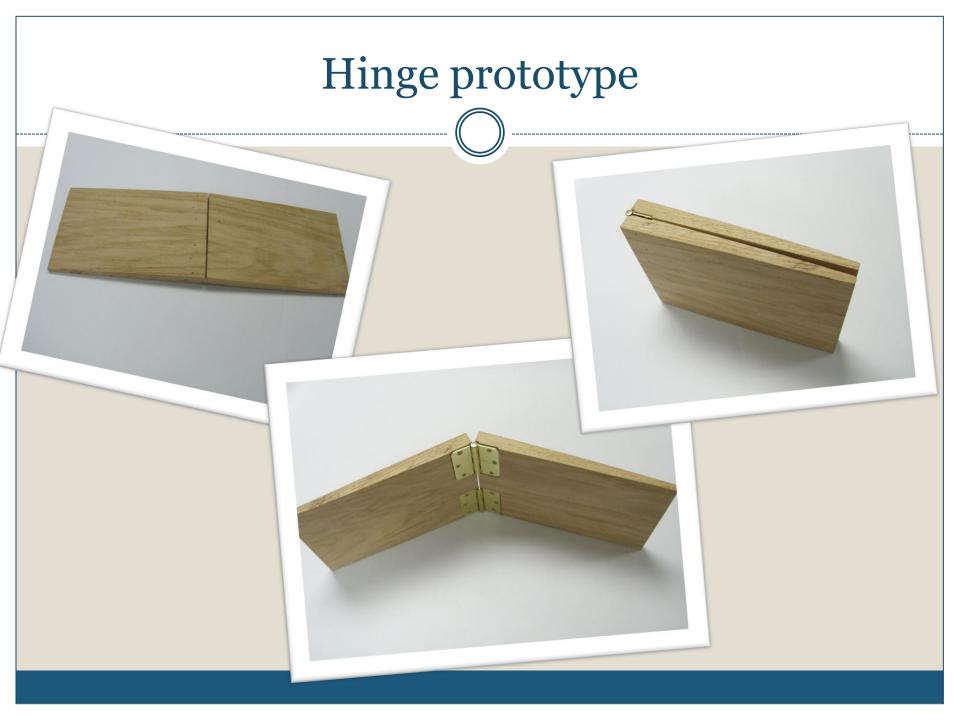

Personal experiences with the REC

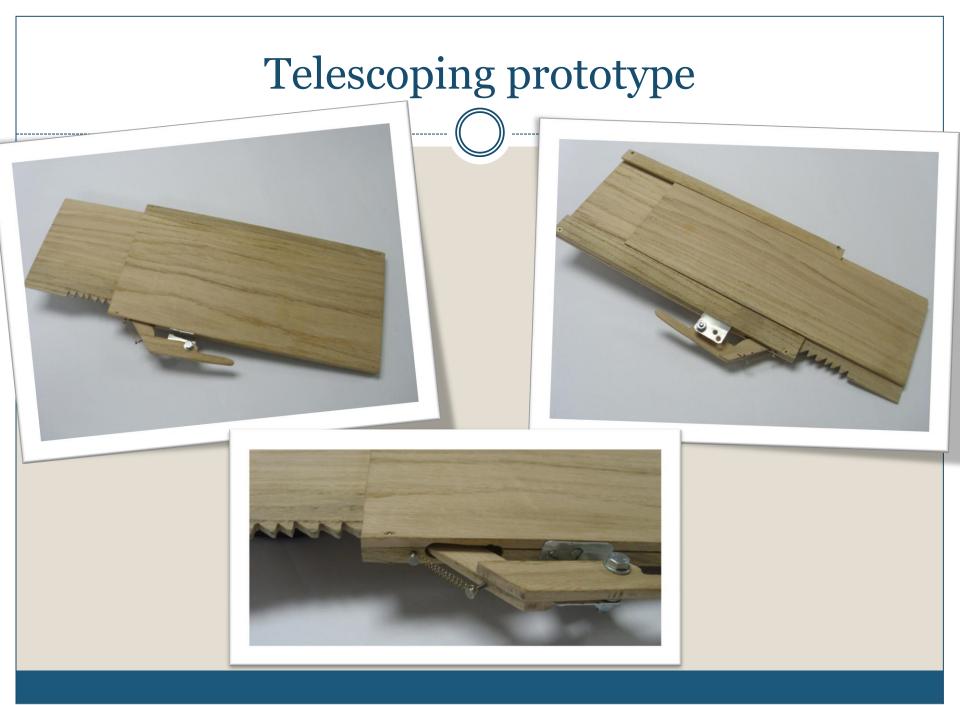

 Initiated contact with UNC at start of 3rd year, discussions with Dr. Wysk at NC State during 3rd year fall semester

 Submitted proposal abstract in December of fall semester, which Dr. Wysk presented to students in the Industrial and Systems Engineering (ISE) program

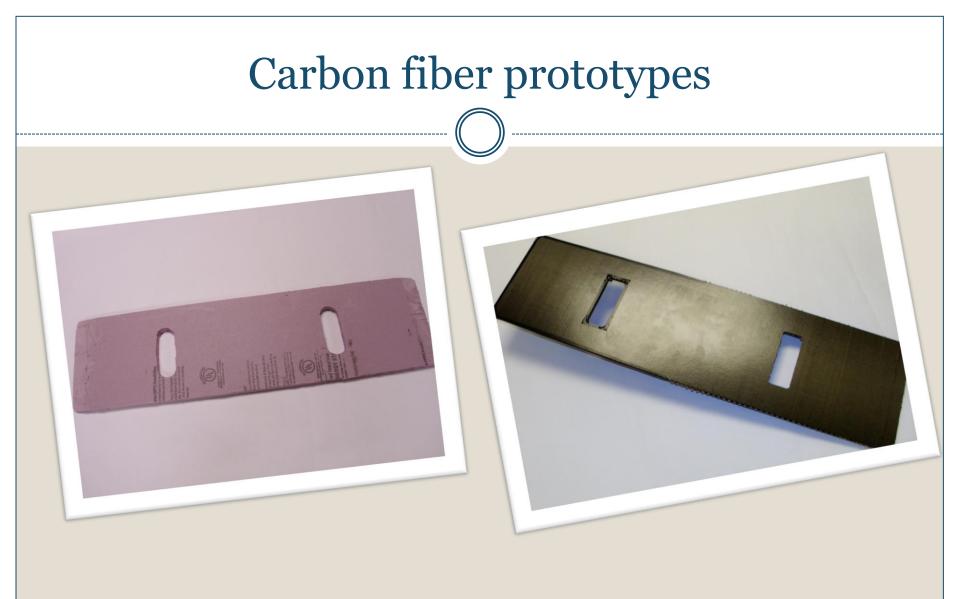
• 3 students chose to participate in the REC to produce their senior design project

Brainstorming the device features

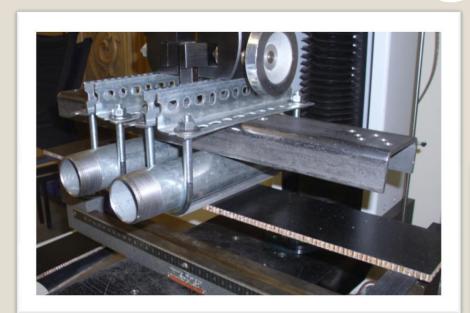



Brainstorming optional designs

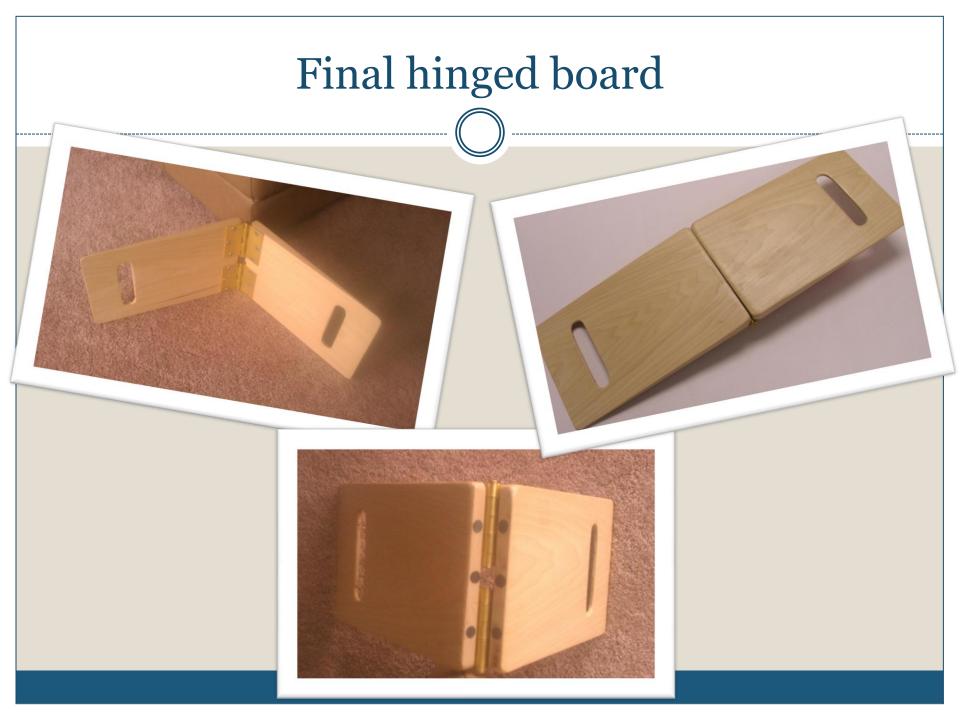
What did we decide?


 Design a carbon-fiber version of the traditional board

- Develop a collapsible board using one of the following design options
 - o Hinge
 - Telescoping
 - o Roll-up






Failure testing of prototypes

References

- 1. Clark PG. What would a theory of interprofessional education look like? Some suggestions for developing a theoretical framework for teamwork training. *Journal of Interprofessional Care*. 2006;20:577-589.
- 2. O'Sullivan PS, Stoddard HA, Kalishman S. Collaborative research in medical education: a discussion of theory and practice. *Medical Education*. 2010:44:1175-1184.
- **3.** D'eon, M. A blueprint for interprofessional learning. *Journal of Interprofessional Care*. 2005;supp 1:49-59.
- 4. Stucki G, Celio M. Developing human functioning and rehabilitation research part II: interdisciplinary university centers and national and regional collaboration networks. J Rehabil Med. 2007;39:334-342.

Thank You

Thank you to:

- Dr. Rick Segal
- Dr. Richard Wysk
- o Calvin Brown
- o Benjamin Davis
- o William McCall
- Nicole Hebert
- o Joanie Follensbee

