Jen Tooher PHYT 752 Evidence Based Practice II Module 4: Evidence Table

PICO: In people with multiple sclerosis, does resistance training improve gait speed and/or gait endurance when compared to other forms of exercise training?

Abbreviations: QOL= quality of life, FSST=four square step test, FRT= functional reach test, 6MWT= 6 minute walk test, MSIS=multiple sclerosis impact scale, BDI= Beck Depression Inventory, MFIS= modified fatigue impact scale, SF-36= short form-36, M:F= male: female, 2MWT= 2 minute walk test, 25FWT=25 foot walk test, 10MWT= 10 meter walk test, TUG= timed up and go, FSS=Fatigue Severity Scale, PRT= progressive resistance training, DMT= disease-modifying therapy, MSFC= MS Functional Composite, CES-D= Center for Epidemiologic Studies Depression Scale, FIM= Functional Independence Measure, RMI= Rivermead Mobility Index

Author, Year,	Purpose,	Subjects	Intervention	Results	Application to PICO	Comparison/
Journal, Title	Design			(p<0.05)	Question	Notes
Sabapathy NM et	To compare	Protocol: 8 wks	Resistance: 2x/wk	Pre/post scores for FRT,	Both endurance and	Depression might not
al, 2011	how 2 types	of training #1, 8	for 8 wks, 5 min	FSST, TUG, and 6MWT	resistance training	have been accurately
Clin Rehabil	of training	wks off, 8 wks of	walking warm up,	showed statistically	improved function,	assessed; QOL of the
	affect	training #2	3 upper body, 3	significant (p<0.01)	mobility, fatigue, and	sample was high;
Comparing	functional		lower body, 1 core,	changes from before to	disease impact,	small sample size;
endurance- and	capacity,	Resistance 1st:	1 stability exercise,	after training with both	although neither type of	people were fairly
resistance-exercise	QOL, and	n=11, Endurance	2-3 sets of 6-10	resistance and endurance	exercise modality	high functioning
training in people	mobility in	<u>1st</u> : n=5	reps. 15-20 min	training. The MSIS-	improved significantly	with MS; no control
with multiple	people with		stretch.	physical and MFIS-	more than the other.	group; potential
sclerosis: a	MS.	Age: 55±7		physical and psychosocial		carry-over because
randomized pilot		1:3 M:F	Endurance:	were significant with both		of design; big
study	Cohort	10±10 yrs disease	2x/wk for 8 wks,	training types. The MSIS		differences in
		duration	5 min walking, 2	and MFIS- physical were		numbers in each
		n=10 RRMS	circuits x 5min then	significant with p <0.05;		group.
		n=6progressive	2 min break, 15-20	MFIS- psychosocial was		
			min stretching.	significant with p <0.01.		
Kjolhede T et al,	To determine	16 publications	A variety of	PRT does not significantly	PRT seems to have	One of the author's
2012	if PRT	out of an initial	interventions were	influence disease	some positive benefits	of the review
Multiple Sclerosis	improves	grouping of 389	performed in each	progression, mood, balance,	for people with MS, but	published an article
	strength, gait	titles and	study. This	or QOL. PRT positively	results are not strong	included in the
Multiple Sclerosis	speed,	abstracts.	systematic review	influences LE muscle	regarding the	review, so skewed
and Progressive	fatigue, and		took all the results	strength, increase muscle	connection between	conclusions may
Resistance	QOL.	Articles met	from each	hypertrophy and motor unit	PRT and improved gait	occur; only 8 of 16
Training: A		following	intervention and	adaptations. Some minor	speed or distance.	studies were RCTs;
Systematic Review	Systematic	criteria: peer-	determined the	improvements might occur		sample sizes in most
	Review	reviewed,	value of PRT on	with functional tasks,		studies were small;
		longitudinal,	impairment,	although non-significant		statistical power was
		training	functional, and	gait speed/distance		not reached in a lot

DeBolt LS et al, 2004 Arch Phys Med Rehabil The Effects of	To identify if PRT effects physical functioning, (gait, leg power and	intervention with appropriate progression. People included in the studies had EDSS <6.5. n=37 subjects, 29 female, 8 male; mean age 51.7; stratified by age (decades) and disability level	participation factors in people with MS. <u>Group 1</u> : n=19, 6 instructional exercise 2 wks before baseline measures, then 3x/wk for 8 wk	improvements. PRT may improve self-reports of fatigue and help reduce CAD risk with MS. Studies included in the review reported significance of p<0.05. No significant change found in AP, ML, or velocity sway on force platform. Found a 12.7% difference (not significant) in TUG. Significant	A resistance training HEP is an inexpensive alternative to help increase, though maybe not significantly, mobility in adults with	of the studies included; few participants have been stratified by disability, gender, age, or DMT. Non-probability sample; no blinding; length of the study might have limited effects; took best score of 2 trials for
Home-Based Resistance	balance.) To determine if a	using EDSS; subjects able to	home-based LE resistance training	difference in the Leg Extensor Power Rig.	MS.	TUG; small sample size: exercise group
Exercise on Balance, Power, and Mobility in Adults with Multiple Sclerosis	PRT HEP is accessible, cost- effective, and has good adherence. RCT	walk >20m without rest w/ or w/o assistive device.	program: chair raises, leg curls, forward lunges, step-ups, heel-toe raises. <u>Group 2</u> : 17 control subjects maintained current PA.	This resistance training HEP had good adherence and is well-tolerated by people with MS.		started with a lower baseline power score and had greater potential for improvement.
Dodd KJ et al, 2011	To perform a high-quality	n=71	<u>PRT</u> : 45 min. 2x/wk for 10 wks.	After training, PRT did not significantly increase	PRT does not significantly impact	Only high- functioning MS
Multiple Sclerosis	study	<u>PRT</u> : $n=36$, mean age 47.7	30 min recovery &	2MWT or 10MWT	walking speed or distance in people with	patients with RRMS
Progressive resistance training did not improve walking but can improve muscle performance, quality of life, and fatigue in adults with multiple sclerosis: a randomized controlled trial	examining physical & psychological effects of resistance training on people with RRMS, and to examine if changes persist over 12 weeks. RCT	mean age 47.7, ambulation index 2-4, 24 didn't use AD, 22 had MFIS>38 <u>Control group</u> : n=35, mean age 50.4, ambulation index 2-4, 22 didn't use AD, 19 had MFIS>38.	socializing. Exercises: leg press, knee extension, calf raises, leg curls, and reverse leg press with 2 min rest given between sets. Progression based on 2009 ACSM guidelines <u>Control</u> : usual care	 compared to control. PRT increased 1RM leg press & 1RM strength/endurance of reverse leg press. PRT decreased physical fatigue, total fatigue, & improved physical QOL. Moderate correlation between reverse leg press, leg press strength, and walking speed. 12 wks after training, PRT significantly improved 	distance in people with MS, though changes in muscle strength and endurance can occur, which have the potential to impact walking ability. PRT is safe and might help decrease muscle spasm and stiffness.	included; outcome measures used might not have been sensitive enough to identify the benefits or effects of PRT; improvements in strength might include a component of learning since exercise and testing were done on the same equipment; PRT program wasn't individualized to a

Romberg A et al, 2005 <i>J Neurol</i> Long-term exercise improves functional impairment but not quality of life in multiple sclerosis	To determine if a long-term resistance and aerobic exercise program affects functional impairment and/or health-related quality of life in people with mild to moderate MS. RCT	n=95 Exercise group: n=47, mean age 43.8, 63% female, 36% married, 62% full/part-time, mean 6.0 yrs with disease, 2.0 mean EDSS score, 123.4 mean FIM <u>Control</u> : n=48, mean age 43.9, 65% female, 25% married, 54% full/part-time, mean 5.5 yrs with	& 1 hr/wk for 10 weeks social program. <u>Exercise</u> : wks 1-3: inpatient rehab with supervised training, 5 PRT sessions, 5 aerobic sessions. Weeks 4- 26: HEP according to instructions from PTs. HEP: PRT 3- 4x/week & aerobic training 1x/week. Used theraband to increase difficulty. Participants called 4x to encourage adherence.	muscle endurance for reverse leg press compared to control, with p<0.05. The exercise group significantly improved their MSFC score while the control group deteriorated. 25FWT significantly improved in the exercise group compared to the control. EDSS remained unchanged over the course of the intervention. No significant change in disability was seen from the FIM, in health-related QOL from the MSQOL-54, or in depression seen from CES- D; reported with	6 months of mostly resistance training with 1x/wk aerobic exercise can improve function in people with MS, measured using the MSFC. The biggest significant change in function with this exercise program was the 25FWT, a measure of walking speed.	patient's key impairments. The sample size was not justified; there was no standardization between what the control group could or could not do; the 9HPT and PASAT components of the MSFC have been shown to be susceptible to practice effects; and randomization occurred before patients were confirmed to be eligible.
Taylor NF et al, 2006 <i>Disabil Rehabil</i> Progressive resistance exercise for people with multiple sclerosis	To determine if PRT can increase maximal muscle force, muscle endurance, functional activity, ad improve overall psychological function in people with MS.	EDSS score, 123.9 mean FIM. n=9, 7 female, 2 male, mean age 45.6 yrs, mean disease duration was 6.0 yrs, categorized as mild to moderate disability, no participants used an AD. 2 participants withdrew from the study, leaving a total of n=7.	Controls: received no intervention. Exercise at gym 1x/week during week 1, 2, and 4. Testing wks 2 & 4, followed by 10 wks of PRT performed 60 min 2x/wk, with 6 exercises: leg press, calf raise, knee extension, lat pull down, arm press, seated row. ACSM guidelines	significance of p<0.05. Training loads increased around 45% in the UE and 80% for LE. Stable baseline measures between wks 2 & 4. Significant increase in leg strength (32.6%), leg endurance (170.9%), and arm strength (14.4%.) Significant improvement in fast walking speed (6.1%), and trend toward increased walking endurance. No significant change found in	PRT showed significant improvements in pre to post-scores in LE muscle strength, endurance, walking speed, and potentially walking endurance.	The selection criteria limited a lot of people with MS so isn't generalizable to everyone with MS; the sample size was very small; no control group was compared to the intervention group.

White LJ et al, 2004 <i>Multiple Sclerosis</i> Resistance training improves strength and functional capacity in persons with multiple sclerosis	Cohort To evaluate the effect of 8 weeks of PRT on LE strength, ambulation, fatigue, and self-reported disability in people with MS. Cohort	n=8, 7 female, 1 male, EDSS between 1-5, all subjects did light PA 3 months prior to study, mean age 46, mean BMI 27, mean self- reported EDSS 3.7.	for progression with 2-min rest between each. 30 min social interaction after exercise. Resistance training 2x/wk for 8 wks. Baseline results determined initial training loads. Did warm-up set (5 reps at 40% MVC). Wk 1: 1 set of 6-10 reps at 50% MVC. Wk 2: 1 set of 10-15 reps at 60% MVC. Wk 3-8: 10-15 reps at 70% MVC. Training lasted 30 min. If subjects did 15 reps 2 sessions	self-selected walking speed or timed stairs test. Physical impact of MS decreased throughout training. No change in psychological impact of MS was found. Significant increases in muscle strength for knee extension & plantarflexion, non-significant knee flexion & dorsiflexion. Training volume wks 4-8 was significantly greater than wk 1. No significant changes seen in muscle CSA or volume, though both improved. No significant change occurred in 25FWT, but # of steps taken in 3 min significantly increased (8.7%.) MFIS fatigue decreased (p<0.04.)	Resistance training is well tolerated, can improve strength and walking endurance, and decrease self-reported fatigue in people with MS. Though results seem to be directly correlated to strength gains, some crossover seems to exist with functional activities. In people with MS who have difficulty walking primarily because of LE muscle weakness, PRT might be effective to target the appropriate impairments and	The progressive resistance training was only moderate intensity and may not have been aggressive enough to identify changes to muscle; there is no control group; the sample size is very small; training protocol did not discuss level of supervision or interaction with participants.
			15 reps 2 sessions in a row, resistance increased 2-5%.	fatigue decreased (p<0.04.) Self-reported EDSS was decreased, not significantly.	target the appropriate impairments and improve function.	
Broekmans T et al, 2011 <i>Multiple Sclerosis</i> Effects of long- term resistance training and	To determine if 20 weeks of standardized resistance training with and without	n=33 <u>PRT</u> : n=11, 6 female, 5 male, mean EDSS 4.5, mean age 44.9, 5 RRMS, 6 progressive MS	PRT: 2 10-wk training periods based on ACSM. 60 min every 2 wks. Sessions: cycle ergometer	Training load increased in both PRT and PRT+E groups, with average training session load of PRT+E significantly higher than PRT with leg	A standardized 20-week low to moderate intensity unilateral resistance training program can improve muscle strength, but doesn't change	Small samples size decreased power; decreased blinding of investigators; subjects were randomized based on EDSS and not
simultaneous electro-stimulation on muscle strength and function in multiple sclerosis	simultaneous electrical stimulation increases leg muscle	<u>PRT+E-Stim</u> : n=11, 6 female, 5 male, mean EDSS 4.4, man	warm up, unilateral leg press, leg curl, leg extension, 1-2 rep sets & 2 min	extension & leg press, not leg curl. Isometric strength same between groups, but significantly bigger than	functional mobility significantly. Simultaneous e-stim doesn't show added benefits.	muscle strength; LE testing was only unilateral but functional measures involve bilateral

	strength and overall functional mobility. RCT	age 48.7, 2 RRMS, 8 progressive MS <u>Control</u> : n=14, 11 female, 3 male, mean EDSS 4.1, mean age 49.7, 6 RRMS, 6 progressive MS	rest between. Cool- down & stretch. <u>PRT & E-Stim</u> : participants followed the same protocol, with quads activated during leg press & leg extension. <u>Control</u> : continue w/current activity.	control. No significant interaction found between max isokinetic muscle strength & endurance. Walking endurance significantly improved in PRT compared to control after 10 wks, but no significant difference seen in 2MWT, T25FW, TUG, or RMI with p<0.05.		strength and endurance.
Cakt BD et al, 2010 <i>Am J Phys Med</i> <i>Rehabil</i> Cycling progressive resistance training for people with multiple sclerosis: a randomized controlled study	To determine how cycling progressive resistance training and balance exercises affect walking speed, balance, fatigue, fear of falling, depression, and quality of life in people with MS. RCT	n=33 <u>Group 1</u> : cycling + exercise, n=14, 9 female, 5 male, mean age 36.4, mean BMI 25.2, mean duration of MS 9.2 yrs, 28.5% used AD. <u>Group 2</u> : HEP, n=10, 8 female, 2 male, mean age 43, mean BMI 24.6, mean duration of MS 6.2 yrs, 20% used AD. <u>Group 3</u> : n=9, 6 female, 3 male, mean age 35.5, mean BMI 21.3, mean duration of MS 6.6 yrs, and 37.5% used AD.	PRT: 2x/week for 2 mo =16 sessions. 15 sets each time: 2 min high-resistance pedaling & 2 min of low-resistance or rest. After cycling, 5 min walking + stretching, then 20- 25 min of balance exercises (balance board, walk on toes, backwards, leaning to side, LE plyometrics), & 5 min stretching. <u>HEP</u> : same as PRT, without cycling. Subjects contacted 2x/month to monitor adherence. <u>Control:</u> nothing	Statistically significant improvements on 10MWT, TUG, DGI, FRT, FSS, FES, and BDI after the cycling PRT. The mean FES scores of HEP improved after training. No significant improvements in control. No differences between groups found for SF-36, but cycling PRT showed improvements in physical functional & role-physical function of SF-36 from start to finish. Moderate correlations between the 10MWT & TUG, DGI, FRT, FSS, BDI, FES. Adherence was good (93%) and no injuries occurred as a result of this program.	Cycling PRT with balance exercises are well tolerated can positively impact walking speed, balance, fear of falling, fatigue, and depression, as well as physical functioning and role-physical functioning scales of the SF-36.	There was not a disease-specific QOL scale used, small sample size and the study can't isolate whether the effectiveness of the intervention was from cycling or balance or both