

Jessica L Burpee¹, Michael D Lewek¹ UNC Chapel Hill Division of Physical Therapy

Stroke

 Stroke is a leading cause of impairment and physical disability

occur in the U.S. each year (Go 2013)

 Hemiparesis is a common motor deficit following stroke (Cauraugh 2003)

Falls following stroke

 70-80% of post-stroke individuals will experience a fall (Forster 1995)

Most falls occur during walking and transfers

 High incidence of adverse outcomes due to falls in individuals following stroke (Schmid 2013)

Hemiparetic gait

- Alterations in lower limb mechanics (Olney 1996)
 - Joint angle changes throughout the gait cycle
 - Changes in joint moments and powers

- Resultant gait abnormalities (De Quervain 1996)
 - Reduced walking speed
 - Reduced step length
 - Reduced stance time on the paretic limb
 - Increased double support time

Hemiparetic gait

 Gait impairments result in an increased risk of trips and falls during walking

Hemiparetic gait, trips, and falls

Purpose

 Determine biomechanical characteristics surrounding instances of unsuccessful foot clearance in individuals following stroke

Hypothesis

 During unsuccessful foot clearance, subjects will exhibit biomechanical alterations that result in a functionally longer limb in swing phase

"Trip" Kinematics
Pelvic obliquity Hip flexion Knee flexion Plantarflexion

Subjects n=26

Demographics	Mean	SD	Range
Age (y)	56.0	11.5	(35-81)
Time post stroke (months)	59.5	75.9	(9-333)
Gait speed (m/s)	0.68	0.27	(0.2-1.3)
Fugl-Meyer Motor Function LE	23.9	4.40	(14-31)
Berg Balance Scale	48.8	5.5	(38-56)
	Number of subjects		
Paretic side (Right/Left)	15/11		
AFO	2		
Assistive device	2		

Gait Analysis

- 20 min training session
- Dual-belt

 'instrumented'tre
 admill (Bertec
 Corp.)

Gait Analysis

 Limb movement recorded via retroreflective markers and a motion analysis system (Vicon Corp)

Collected at 120 Hz

Gait Analysis

- Sagittal, frontal, and transverse plane angles
- Hip, knee, and ankle joints

Visual3D (C-Motion, Germantown, MD)

Biomechanical parameters during

Collected measures

- Spatiotemporal parameters
 - Stance time
 - Double support time
- Kinematic parameters
 - Peak sagittal plane hip,
 knee, ankle angles
 - Frontal plane pelvis and hip angles
 - Knee angular velocity

- Kinetic parameters
 - Hip, knee, ankle joint moments
 - Max hip and ankle powers
 - Ground reaction forces

Statistics

Paired samples t-test p<0.05

Successful vs unsuccessful foot clearance

Ankle angle at toe-off

p = .003

Mean difference: 1.1° more plantarflexion

Successful vs unsuccessful foot clearance

Knee flexion velocity at toe-off

p = .001

Mean difference: 17.5°/sec less knee flexion velocity at TO

Successful vs unsuccessful foot clearance

Peak knee extension moment late stance

p = .001

Mean difference:

0.01 Nm/kg·m

greater knee

extension moment

Conclusions

 Small quantitative differences between successful and unsuccessful foot clearance

 Multi-joint biomechanical changes contribute to unsuccessful foot clearance

These changes result in a functionally longer paretic limb during swing phase

Clinical Implications

 Minor alterations in movement of the paretic limb can lead to unsuccessful foot clearance and an increased risk for falls

 Multi-joint interventions targeting increased flexion throughout the paretic limb may reduce the risk of unsuccessful foot clearance in hemiparetic individuals

Thank you

- Funding
 - Foundation for Physical Therapy, Inc.: Geriatric Endowment Fund
 - American Heart Association [grant number: 09BGIA2210015]

Biomechanical parameters

Measure	P value
Stance phase (sec)	0.36
Double support time (sec)	0.41
Propulsive impulse	0.57
Peak propulsion	0.24
Ankle angle (toe-off)	0.003
Peak DF angle (swing)	0.77
Peak knee flexion angle (swing)	0.19
Knee flexion velocity (toe-off)	0.001
Peak hip extension angle (late stance)	0.87

Measure	P value
Hip hike angle (swing)	0.71
Circumduction (mm)	0.52
Plantarflexion moment	0.57
Knee extension moment	0.001
Hip flexion moment	0.50
Plantarflexion power	0.41
Hip flexion power	0.22
Limb length (toe-off)	0.70
Limb length (swing)	0.82