Bilateral Pole Walking Effects Evidence Table - Middle-Aged Adults | | 1 | | | | bic - Wilduic-Aged Add | 1 | , | |---|---|--|---|---|---|--|--| | Author/Year
Title
Journal/Country | Study Design &
Purpose | Participants | Intervention | Measures | Results | Conclusions | Relevance/
Comments | | Hagen et al (2011) Lower & Upper Extremity Loading in Nordic Walking in Comparison with Walking & Running (Germany) | Cross-Sectional Examine jt loading parameters and risk of injury w/ NW @ various speeds compared w/ W & running | 38±13 yrs
12 M, 12 F | Randomized W & NW trails by ea participant @ 5, 7, 8, & 8.5 kph | Movement speed,
GRF,pronation(ele
ctrogoniometer),
wrist accelometry
measure of shock
wave transmission | W w/ AI F loading force in | •Based on type of NW technique practiced, LE loading forces not reduced in NW compared w/ W. • Repetitive wrist shocks↑ wrist injury risk. Pole handling, grip force, and shock absorption, & prevention ex may ♣risks | * Participants instructed & practiced a particular NW technique of Western German Skiing Assoc, w/ longer stride • Wrist safeguard considerations | | Hansen et al (2009)
Energy Expenditure &
Comfort During nordic
Walking with Different
Pole Lengths (Norway) | Cross-Sectional Examine NW effects of different pole lengths | n=12
50.6±2.4 yrs
1 M, 11 F
healthy, NW
practictioners | treadmill trials on
level, 12° uphill &
downhill grades w/
different pole
lengths | Self-rated comfort
Max O2 uptake
lactate analysis,
HR | Self selected pole length=67.7±0.5% body ht Uphill pole length =63.3±0.6% body ht No difference btw level & downhill NW * 67% ↑energy expenditure in level NW than W | Shorter poles uphill NW energy expenditure Self-selected pole length corresponded to comfort | Participants practiced a particular NW technique w/ ↑stride length Pole adj.individualized for comfort, shorter for uphill climbs | | Knobloch et al (2006)
Nordic Pole Walking
Injuries - Nordic
Walking Thumb as
Novel Injury Entity
(Germany) | Review Obtain data the injury and overload rates of NW | n=137
53.5± 12 yrs
74% F
NW
practitioners | Questionnaires btw
May-September
2005 | Calculation of means, standard deviations awa the calculation of the ind & total exposure time in hours | Per 1000 hrs: Total NW injuries=0.926 UE (0.549)>LE(0.344) inj. Most freq inj=distortion of unlar collateral ligament of thumb (0.206)> fall • all resumed NW by 4wks | •NW considered a safe
sport. •NW thumb inj may
happen w/ fall w/ pole
handle forcing thumb into
abd & ext.•Prevention
efforts-grip constructio/
modifications/education/
technique changes | Assessment of grip
during PW and
determination if/how
strap is used for
injury prevention | | Fritschi et al (2012)The
effects of pole walking
oh health in adults: A
systematic review
(Australia) | Review Summarize effects of PW programs on physical & psychosocial health via quality studies | studies, 531
articles were
identified,
winnowed to 14
papers (11 RCTs,
3 CTs) meeting | Process involved 2 ind reviewers reading abstracts w/consensus for eligibility. Final articles inde reviewed & assessed by 2 authors. | Quality assmt of studies - modified Delphi quality score ((yes-no scoring, all criteria equally weighted, >50% rating defined as high quality). | • Quality scores of 14 PW articles ranged from 29% - 86%, with the majority (11) scoring >50% (considered high quality). | • Evidence supports PW has pos effects on phys act & psychosocial outcomes, is well-tolerated & appears to be a safe ex for a wide variety of individual & pt populations. All studies found at least one pos effect, particularly w/ cardioresp, phys activity, & QoL outcomes. | • PW effects on pain,
anthropometry,
muscle strength &
flexibility, fatigue,
gait parameters, &
blood glucose levels
are unclear, more &
better quality
research needed. | Debra Gerber, PT/2014 ## **Bilateral Pole Walking Effects Evidence Table - Middle-Aged Adults** | Author/Year
Title
Journal/Country | Study Design &
Purpose | Participants | Intervention | Measures | Results | Conclusions | Relevance/
Comments | |---|---|--|---|--|---|--|---| | Kukkonen-Harjula et
al (2007) Self-guided
brisk walking training
with or without poles:
a randomized-
controlled trial in
middle-aged women
(Finland) | RCT* Study health related fitness effects of NW & W w/ sedentary middle-aged women | n=115,
into 2 groups:
PW=57, W=58
54±3 yrs,
female
sedentary | 40 min 4x/wk for 13 wks, warm-up ex, subjective "walk briskly"protocol & cool-down | HR (monitor), RPE,
Pain report
Pre/Post: 1-leg
balance, walking
bkwds, neck
shoulder mobility,
UE extension, one-
leg squat | 9 drop-outs (3NW, 6W), 4 training-related LE non-severe injuries from both groups. so post test groups NW=54, W=52) No significant btw group differences except W improved more in 1 legged squat test. | Both W & NW groups demonstrated significant improvements in health-related fitness, and both W & NW appear to be safe & feasible fitness interventions. | Dynamic UE mm test
was based on
repetitions w/o wts
UE strength meas
may have provided
more btw group
comparative data | | Sprod et al (2005)
The Effects of Walking
Poles on Shoulder
Function in Breast
Cancer Survivors (USA) | RCT* For breast cx survivors, would PW ex program ↑shoulder ROM & UE mm endurance? | n=12,
into 2 groups:
PW=6, W=6
breast cx
survivors,
women
50.3±2.7 yrs | Both groups: 20 min,
2x/wk for 8 wks, to
PW or W intensity of
40-50% HR reserve,
followed by 30 min
RET | shoulder ROM & | PW showed SS (p<0.05) on
bench press & LD pull-
down ex; W group showed
no within-group
improvement in UE
muscular endurance. | PW may be easy to use, provide increased stability, may enable increased walking intensity, and increase opportunities to target shoulder mm activity and promote function | Intriguing study, no comments on wearing compression sleeve during activity, which may be important for lymphedema mgmt | | Mannerkopi et al (2010) Does Moderate-to-high intensity Nordic walking improve functional capacity and pain in fibromyalgia? A prospective randomized controlled trial (Sweden) | Prospective RCT* Study NW program effects w/ population w/ fibromyalgia in hbody fx and pain sx | n=67
into 2 groups:
NW=34, W=33
women,
fibromyalgia dx
49±7.7 yrs | Both groups: 40-45
min, 2x/wk for 15
wks, (20 min w/
actual W or NW)
NW:mod-to-high
intensity, W:low
intensity workout | •6MWT • FIQ Pain scale, FIQ Physical &, FIQ total scores • EX HR in bicycle ergometer bicycle test • 6 mo followoup | 58 completed (9 dropout) •SS♠6MWT(p=0.009) ,FIQ Physical (p=0.027), & SS♥in ex HR (p=0.020) in NW compared w/ W group • no btw group differences for FIQ pain • mod outcome effect size | • tailored NW program btw low & mod to high intensity may be effective for pts w/FM to ↑phys fitness & fx & ↓activity limitations. No change demonstrated in pain severity - did not ↓pain but also did not appear to contribute to flare-ups. | Given effective
adjustments of NW
ex program to match
ex capacity, NW may
be effective ex &
fitness intervention
for some pts w/ FM | | Hartvigsen et al (2010) Supervised and non-supervised Nordic walking in the treatment of chronic low lack pain: a single blind randomized clinical trial (Denmark) | vised & super-
vised NW program
effects in pts w/
chronic LBP | n=136 into 3 groups: sup NW=45, unsup NW=46, advice=45 68-77% F, 34-23%M LBP dx > 8wks | •sup NW group-45
min, 2x/wk for 8 wks
• unsup NW -1x NW
instruction & at
home practice 8 wks
• Advice group- ed
info only | (HrQoL scale), •Medication use, | No SS improvements found between groups, sup NW group faired better than other groups. At 8 wks, sup NW group used ♥pain meds,and ♥care visits • No reported neg effects | Although no SS findings,
mean improvements
favored sup NW group
program. For selected pts
w/ LBP, NW may be effect
intervention. | Given wide variability of sx in pop w/ LBP, PW modifications and adjustments may contribute to success of PW intervention. | Debra Gerber, PT/2014 ## Bilateral Pole Walking Effects Evidence Table - Middle-Aged Adults | | | Dilate | iai Pole Walkilig Li | rects Evidence 1 | abie - iviidale-Aged Adu | 113 | | |---|---|---|--|---|--|--|---| | Author/Year
Title
Journal/Country | Study Design &
Purpose | Participants | Intervention | Measures | Results | Conclusions | Relevance/
Comments | | Kocur et al (2009) Effects of NW training on exercise capacity & fitness in men partici- pating in early, short- term inpatient cardiac rehabilitation afater and acute coronary syndrome a controlled trial (Poland) | CT* Determine if adding NW to standard cardiac rehab improve pt fitness outcomes. | n=80 into 3 groups: NW=40, W=20, | All groups part of inpt cardiac rehab program 5x/wk for 3 wk starting w/ ex. & cycle ergo-meter trng. NW group had additional NW session, W group had add'l W session. | *Fullerton Functional Fitness Test *Ex capacity - sx- limited treadmill ex w/ modified Bruce protocol * HR, Borg RPE | Btw W & NW groups, NW had SS↑in chair stand and Up & go subtests of FFFT NW ex cap SS↑over both groups W & NW showed SS↑in FFFT over C group. | NW may be effective adjunct intervention for pts w/ acute coronary syndrome w/ good ex tolerance in early (2-3 wks post) rehab jprograms. | NW program intensity monitored by PT w/ length of outdoor course =2.5 km; 5 min break halfway. | | Figard-Fabre et al
(2010) Efficacy of
Nordic Walking in
Obesity Management
(Italy) | CT* Compare NW w/ W interval program to improve ex capcity of obese middle- aged women | n=23 ,
into 2 groups:
NW=12, W=11
middle-aged
female
obese
BMI 85-86±15 | 45 min 3x/wk for 12 wks training program, subjects in NW pogram had add'l trng instruction. 1 session/wk supervised, 2/wk individual | Anthropometric measures, HRR measures for ex intensity determiniation, Borg RPE, ex adherence, HR monitor, metabolic system monitor | • NW mean adherence rate significantly higher than W program, although both program adherence in W program also good • Both NW & W programs showed SS improvements in BMI, ♥in %body fat and diastolic BP measures. • Positive resonse to NW by participants | NW may be effective intervention for fitness activity for individuals w/ obesity, authors suggest to start by walking @ preferred walking speed & gradually adjust to perceived "maximal speed". | NW adjustments in use and intensity may help to increase reg ex activity and adherence for sedentary ind w/ obestity. | Debra Gerber, PT/2014