Bilateral Pole Walking Effects Evidence Table Young Adult | Author/Year Title
Journal/Country | Study Design &
Purpose | Participants | Intervention | Measures | Results | Conclusions | Relevance | |---|---|---|---|--|---|--|---| | Saunders et al (2008) Trekking poles increase Physiological Responses to Hiking Without Increased Perceived Exertion (USA) | Cross-sectional Compare physio- logical & subjective effects of mod hiking w/&w/o poles | n=15
22.1±2.1 yrs
healthy, male
novice hikers | 4 trials on mod 1.25
km hiking trails, 2 w/
poles, 2 w/o poles @
self-selected pace | Portable
metabolic unit &
HR monitor for
VO2, VE & HR
RPE | Significant ↑ (p<0.05)
in VO2, VE & HR & ↓
in RPE in PW trials
compared w/ W trials | Use of poles may calorie expenditure w/ less PRE for low-mod intensity hikes on mod grade trails | PW an effective
aerobic activity
w/ less RPE on
easy/moderate
trails | | Foissac et al (2008) Effects of Hiking Pole Inertia and Muscular Costs During Uphill Walking (France) | Cross-sectional
Study of effects of
uphill PW | n=11
24.0±4.6yrs
healthy, male | 14 4-min trials on
treadmill w/ 20%
incline @ fixed speed
w/ & w/o poles w/
varying pole freq | VO2,VCO@, RER
UE/LE EMG (9
mm) | PW ↑UE mm act 95%
& ↓LE mm act 15% @
lower/preferred freq | 1)Pole use when walking uphill does not fenergy costs. 2) Low freq PW redistributes mm recruitment, 3) hi freq PW uphill inefficient | Pole technique
modifications
may improve
effectiveness for
uphill walking | | Schwameder et al (1999)
Knee joint forces during
downhill walking with
hiking poles (Austria) | Cross-sectional
Compare knee jt
loads w/&w/o HP in
downhill walking | n=8
26.6±3.8yrs
healthy, male | Two trials of walking down -25° grade ramp (steep) w/& w/o HP | GRF, knee flexion
moment,
tibiofemoral
compressive &
shear forces | With HP, all variables | HP technique may help to reduce knee joint loading in downhill walking. | PW technique on
downhill may
need adjustment
to improve single
stance support. | | Jacobson et al (1999) Load Carriage Energy Expenditure With and Without Hiking Poles During Inclined Walking (USA) | Cross-sectional Compare load carriage expenditure w/ & w/o HP | n=20
29.7 ± 3.7 yrs
healthy, male | 6 15-min inclined
treadmill trials over 2
wks wearing load
carriage of 15 kg, w/
& w/o HP | HR, VO2, VE, RPE | Mean RPE significantly
lower (p<0.05) w/ use
of HP | HP may decrease RPE when carrying load on mod uphill grade w/o increasing energy expenditure. | PW may help to
carry load w/ less
RPE -
implications for
individuals w/
obesity? | | Pérez-Soriano et al
(2011) <i>Nordic Walking</i>
<i>Practice Might Improve</i>
<i>Plantar Pressure</i>
<i>Distribution</i> (Spain) | Cross-sectional
Investigate PW
suitability for
individuals w/ frail
feet | n=50
25 M, 25 F
mean age 25.9 yrs
20 beg NW & 30
experienced NW | W & NW trials on
12m long walkway @
preferred speed and
faster speed. | 9 foot zones
measured for
plantar pressure
@ preferred and
20% faster
walking speed | Experienced NW had SS (p<0.05) pressure reduction of 35-50% in central metatarsal (CM) area; beginning NW showed SS 20-30% reduction in CM zone | NW intervention may be beneficial for individuals w/ frail feet, including obesity, diabetic neuropathy, to reduce or learn to reduce plantar pressure to CM area. | Use of PW may
help improve
plantar pressure
distribution in
walking activities. |