

ALTERATIONS IN ENERGY COST OF WALKING IN HEALTHY AND HEMIPARETIC GAIT USING FORCES APPLIED TO THE CENTER OF MASS

Introduction

- Walking recovery post-stroke results in:
 - Slow, asymmetric gait¹
- Greater energy cost during walking²
- Higher energy cost of walking
 - Reduced paretic propulsion decreases the body's center of mass (COM) anterior movement³
 - During the latter half of stance phase
- Compensation at other joints may drive up energy cost⁴
- Manipulating the anterior-posterior forces on the COM should influence energy cost of walking

Objective

This study aimed to determine if imposing anterior or posterior forces on the COM during paretic propulsion will alter the energy cost of walking.

Methods

Subjects:

- 7 subjects with chronic (> 6 months) stroke
- 10 unimpaired subjects

Group	Gender	Age (years)	Time Post-Stroke (months)	Over-ground Speed (m/s)	Treadmill Speed (m/s
Stroke	6 F, 2 M	53.12 ± 11.89	102.29 ± 137.24	0.64 ± 0.27	0.54 ± 0.27
Control	6 F, 4 M	25.4 ± 2.8		1.39 ± 0.15	1.35 ± 0.12

Protocol:

- Single-session of walking on treadmill (Bertec Corp, Worthington, OH)
- Began testing with 5 minutes of quiet sitting for baseline O2 cost
- Three randomly-ordered conditions (each lasted 4 minutes)
- Comfortable walking (control)
- Walking with an anterior pull at the COM (anterior)
- Walking with a posterior pull at the COM (posterior)
- A novel device consisting of theratubing was utilized to apply an anterior or posterior force at the COM that coincided with paretic propulsion.
- Each participant received a maximum force pull equivalent to ~10% of their body weight (~5% for two in stroke group)
- Suggested to be an energetic minimum⁵
- Subjects wore a non-restricting safety harness that attached overhead. No BWS was provided

Kelly Hewitt, SPT, Korre Scott, SPT, Michael D. Lewek, PT, PhD

• Data Collection:

- cart)
- Breath-by-breath
- Sampled at 1200Hz

Statistical Analysis:

- Post-hoc tests: paired samples t-tests, as necessary
- Significance set at $\alpha = 0.05$

Results

Figure 1. Average oxygen consumption (VO2) in last minute of each condition for Control group. $(p < 0.001; \eta_p^2 = 0.675)$

Figure 3. Relationship between magnitude of pull force and energy cost change between anterior and control conditions

Division of Physical Therapy, University of North Carolina at Chapel Hill

 Overground self-selected walking speed (20' Zeno pressure mat) Gas exchange (inspired VO2/expired VCO2) (Cosmed metabolic

Anterior-Posterior pulling force (Transducer Techniques)

Repeated-measures ANOVA: average VO2 during the final minute of walking was compared between conditions

Figure 2. Average oxygen consumption (VO2) in last minute of each condition for Stroke group. $(p=0.099; \eta_p^2 = 0.320)$

- These data partially support our hypothesis
- In healthy controls, metabolic cost:
- Decreased during the anterior condition
- These changes were not as robust in our stroke group possibly due to:
- Small sample size
- Excessive or insufficient pull force at the COM can result in increased energy cost or no change at all
- Interventions facilitating anterior translation of the COM merits further investigation with a larger sample size
- Addressing COM mechanics may be a feasible approach for decreasing the metabolic cost of walking for individuals post-stroke.

38-444.

Rev, 2009. **37**(3): p. 130-38. 5. Gottschall, J.S. and R. Kram, *Energy cost and muscular activity required for propulsion* during walking. J Appl Physiol (1985), 2003. 94(5): p. 1766-72.

Acknowledgements This work was funded by TraCS 2KR701505 through NIH grant UL1TR001111

Anterior condition

Control condition

Posterior condition

Discussion

- Increased for the posterior condition
- Slower walking speeds

References

1. Lewek, M.D. and E.P. Randall, *Reliability of spatiotemporal asymmetry during overground* walking for individuals following chronic stroke. J Neurol Phys Ther, 2011. 35(3): p. 116-21. 2. Stoquart, G., C. Detrembleur, and T.M. Lejeune, *The reasons why stroke patients expend* so much energy to walk slowly. Gait Posture, 2012. 36(3): p. 409-13.

3. Bowden MG, Behrman AL, Woodbury M, Gregory CM, Velozo CA, Kautz SA. Advancing Measurement of Locomotor Rehabilitation Outcomes to Optimize Interventions and Differentiate Between Recovery Versus Compensation. J Neurol Phys Ther, 2012. 36(1): p.

4. Sawicki GS, Lewis CL, Ferris DP. It Pays to have a spring in your step. Exerc Sport Sci