SCHOOL OF Rhythmic Auditory Stimulation For Improved Gait in MEDICINE **Parkinson's Disease**

Department of Allied Health Sciences Division of Physical Therapy

Margaret Sherron, SPT, Sarah Stevenson, SPT, Nina Browner, MD, Michael Lewek, PT, PhD

University of North Carolina at Chapel Hill

Introduction

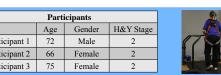
 Individuals with Parkinson's disease demonstrate slow gait speed and shorter stride lengths^{1,2} Pharmacologic management can improve disease symptoms

is ineffective at improving gait deficits^{4,5}

Impaired automaticity of gait contributes to episodes of freezing of gait and increased risk of falls³ Intensive gait training is often utilized as an adjunct to pharmacologic management⁶

- Cues for increased automaticity
- Treadmill provides external cues that can improve gait automaticity⁸
- Overground walking represents typical daily context
- Rhythmic auditory stimulation (RAS) can improve gait speed, stride length and cadence²
- Literature proposes faster frequencies (sources)
- Would produce shorter strides on a treadmill
- RAS also has the potential to improve static and dynamic balance⁸

Purpose


the purpose of this case series was to describe the use of a novel pairing of both big, slow movements (obtained with *slow* tempo RAS on a *treadmill*) followed by high-intensity rapid movements (obtained during fast tempo RAS during overground walking) during gait training for individuals with PD

Results

	Participant 1			Participant 2		Participant 3		
	Pretraining	Posttraining	Follow Up	Pretraining	Posttraining	Pretraining	Posttraining	Follow Up
Mini-BESTest	27	27	28	25	28	19	22	23
Step Test (reps)	25	38	37	41	52	30	28	24
4 Square Step Test	11.9	7.9	7.2	6.4	5.1	11.1	11.1	9.3
Freezing of Gait	7	4	4	3	2	10	10	9

minutes Treadmill (slow tempo RAS TTTTTTTTTT Mid-Ti Asses

Training occurred ~3x/week for 6 weeks.

- Metronome frequency
- Treadmill: 85% of participants self-selected cadence
- Overground: 115% of participants self-selected cadence

Discussion

• A combined treadmill and overground gait training program

- utilizing RAS is a feasible intervention for individuals with PD • Capable of improving both spatial and temporal gait
 - parameters • RAS used on treadmill and overground led to large
 - improvements in gait speed and stride length
 - Changes in cadence were observed with training but were not as large as other parameters
- No substantial improvements in balance were observed
- Further research is warranted

References

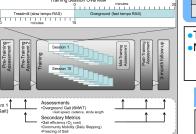
Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. Rhythmic auditory stimulation in gait training for Parkinson's disease patients. Mov. Disord. 1996;11(2):193-200. doi:10.1002/mds.870110213. Suteerawattananon M. Morris GS. Etnyre BR. Jankovic J. Protas EJ. Effects of visual and auditory cues on gait in individuals with Parkinson's disease. J. Neurol. Sci. 2004;219(1-2):63-69. doi:10.1016/j.jns.2003.12.007.

3. Harro CC, Shoemaker MJ, Frey OJ, et al. The effects of speed-dependent treadmill training and rhythmic auditory-cued overground walking on gait function and fall risk in individuals with idiopathic Parkinson's disease: a randomized controlled trial NeuroRehabilitation 2014;34(3):557-572 doi:10.3233/NRE-141051

4. Sethi K. Levodopa unresponsive symptoms in Parkinson disease. Mov. Disord. 2008;23 Suppl 3:S521-33 doi:10.1002/mds.22049

5. Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M, Horak FB. Levodopa Is a Double-Edged Sword for Balance and Gait in People With Parkinson's Disease. *Mov. Disord.* 2015;30(10):1361-1370. doi:10.1002/mds.26269. 6. Freedland RL, Festa C, Sealy M, et al. The effects of pulsed auditory stimulation on various gait measurements in persons with Parkinson's Disease. NeuroRehabilitation 2002;17(1):81-87.

Thumm PC, Maidan I, Brozgol M, et al. Treadmill walking reduces pre-frontal activation in patients with Parkinson's disease. Gait Posture 2018;62:384-387. doi:10.1016/j.gaitpost.2018.03.041.


8. Harro CC. Shoemaker MJ. Frey O. et al. The effects of speed-dependent treadmill training and rhythmic auditory cued overground walking on balance function, fall incidence, and quality of life in individuals with idiopathic Parkinson's disease: a randomized controlled trial. NeuroRehabilitation 2014;34(3):541-556. doi:10.3233/NRE-141048

Methods

Participant 1 Participant 2 Participant 3

SCHOOL OF MEDICINE

Department of Allied Health Sciences Division of Physical Therapy

