Appendix 1: Tables and Figures

****Key Tables**

PRISMA Flow Diagram of Search Results (Figure 1)¹

Imbrella Terms		"Anterior Cruciate Ligame	ent"	"Effus	zion"
Fauivalants		Anterior Cruciate Ligante		Liiu	%11:
Equivalents		• ACL		•	swelling
				•	"edema"
Mesh Terms		"anterior cruciate 1	igament"	•	"edema"
		"anterior cruciate l	igament		
		reconstruction"			
		"Bone-Patellar Ten	don-Bone		
		Grafts"			
		"Bone-Patellar Ten	don-Bone		
		Grafting"			
Search	Terms		Results		
#3	(((((((ACL) C	OR anterior cruciate	658		
	ligament) OR anterior cruciate				
	ligament[MeSH Terms]) OR anterior				
	ligament recon	struction[MeSH Terms])			
	OR Bone-Pate	llar Tendon-Bone			
	Grafts[MeSH]	Terms]) OR Bone-Patellar			
	Tendon-Bone	Grafting[MeSH Terms])))			
	AND (((((swe	elling) OR edema) OR			
	effusion) OR e	edema[MeSH Terms])))			
#2	(((((swelling))	OR edema) OR effusion)	295669		
	OR edema[MeSH Terms]))				
#1	((((((ACL) OR	anterior cruciate	26144		
	ligament) OR	anterior cruciate			
	ligament[MeS]	H Terms]) OR anterior			
	ligament recon	struction[MeSH Terms])			
	OR Bone-Pate	llar Tendon-Bone			

Table 1: Search Terms

Grafts[MeSH Terms]) OR Bone-Patellar	
Tendon-Bone Grafting[MeSH Terms])	

Table 2: Study Characteristics

Study (Author, Year)	Study Design	Patient/Subject Number	Sex Distribution	Age (Years)±SD; Range	Graft Type	BMI (kg/m ²)±SD	Concurrent Pathology	Time from Injury to Surgery ±SD and/or range
RCTs								
Boguszewski, 2013 ²	RCT	26	10M, 16F	Unknown	Unknown	Unknown	Unknown	Unknown
Brandsson 2001 ³	RCT	50	37M, 13F	Mean: 26.9 Range: 15-42	PT autograft	Unknown	Unknown	Mean: 11.3 months Range: 1.5- 120 months
Cappellino 2012 ⁴	RCT	14	14M, 0F	Mean: 27±6 Range: 18-35	PT Autograft	Mean: 24 ±2 kg/m2	Unknown	Mean: 6±2 months
Chan, 2017 ⁵	RCT	60	46M, 14F	Mean: 26.9	HT Autograft	Unknown	21 Meniscectomi es	Unknown
Chau, 2012 ⁶	RCT	32	28M, 4F	Mean: 26.5	HT Autograft	Not Reported	Not Stated	Not Stated
Christanell, 2012 ⁷	RCT	16	12M, 4F	Mean: 30 Range:20–49	PT Autograft	Mean: 24.6±3.4 kg/m ²	None	Mean: 16 months Range: 2 months-12 years
Dhawan, 2003 ⁸	RCT	21	19M, 2F	Mean: 28 Range: 19-36	PT Autograft	Unknown	29 Meniscectomi es	Unknown

Ediz, 2012 ⁹	RCT	26	21M, 5F	Mean: 28.0	HT Autograft	Unknown	Unknown	Unknown
Felli, 2019 ¹⁰	RCT	80	63M, 17F	Mean: 31.4	HT Autograft	Mean: 22.7	43 Partial meniscectomi es, 16 bucket handle tears, 11 chondral damage	Mean: 159.0 days (5.2 months)
Hughes, 2019 ¹¹	RCT	24	17M, 7F	Mean: 29±7	HT Autograft	Mean: 25.9	Unknown	Unknown
Jarit, 2003 ¹²	RCT	28	18M, 10F	Unknown	Unknown	Unknown	228 meniscal tear, 205 chondral injury, 44 collateral ligament injury	Mean: 171 days (5.6 months)
Lindstrom, 2015 ¹³	RCT	60	38M, 22F	Mean: 26±8, Median: 24	HT Autograft	Median: 25.5	10 concomitant meniscus injuries	Median: 11 months Range: 2-180 months
Madadi, 2010 ¹⁴	RCT	46	40M, 6F	Mean: 27.9	HT Autograft	Unknown	Unknown	Mean 13.1months
Mayr, 2010 ¹⁵	RCT	73	Unknown	Mean: 36.1 Range: 17-58	HT Autograft	Not Reported	"No Meniscus Lesions Requiring Surgery"	Unknown
Ruffilli, 2015 ¹⁶	RCT	47	29M, 18F	Mean: 31.8	HT Autograft	Unknown	22 Meniscectomi es	Mean: 3.0 months
Straw, 2003 ¹⁷	RCT	47	30M, 17F	Mean: 26.8 Range: 16-49	PT Autograft	Unknown	Unknown	Unknown

Zamarioli, 2008 ¹⁸	RCT	10	12M, 1F	Unknown	PT Autograft	Unknown	10	Unknown
			(Before		C C		Meniscectomi	
			Dropouts)				es	
Control Trials Without								
Randomization Status								
Stated								
Gramatikova, 2015 ¹⁹	Control Trial	63	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
Rigon, 1993 ²⁰	Control Trial	40	Unknown	Unknown	PT Autograft	Unknown	Unknown	Unknown
Cohort Studies								
Bordes 2017 ²¹	Retrospective	969	764M, 205F	Mean: 25.7 ± 7.0	PT, HT	Unknown	228 meniscal	Mean: 171
	Conort Study				autograft		lear, 205	days (5.0
							inium 44	monuis)
							nijury, 44	
							ligomont	
							injury	
Drechsler 2006 ²²	Observationa	31	25M 6E	Mean: 30+8	PT Autograft	Not Reported	Unknown	Unknown
Dicensier, 2000	l Prospective Cohort Study	51	2311, 01			i vot reported	Clikilowii	Clikitown
Lentz. 2012^{23}	Cross-	94	60M. 34F	Mean: 22.4	PT Autograft.	Unknown	Mean # of	Mean:
,	sectional	-	,		HT Autograft.		Concommittan	75.0±61.0
	Cohort Study				Anterior		t Injuries: 0.86	days (2.5
	j				Tibialis		Iniuries	months)
					Allograft.		include:	
					Tibialis		Meniscal	
					Posterior		Injuries.	
					Allograft.		Chondral	
					Achilles		Lesions, and	
					Tendon		Collateral	
					Allograft		Ligament	
							Injuries	

Intervention and Comparative Studies Without a Control								
Aydogdu, 2017 ²⁴	Non- Randomized Intervention Study	15	13M, 2F	Mean: 23.36±6.76	Unknown	Mean: 25.15±4.86	Not Stated	Not Stated
Benazzo, 2008 ²⁵	Randomized Prospective Study	60	Unknown	Mean: 31.1±1.5	HT autograft	Not Reported	29 Meniscectomi es	Unknown
Feller, 2001 ²⁶	Randomized Intervention Study	65	47 M, 18F	Mean: 26.7	PT, HT autograft	Unknown	Unknown	Unknown
Kaeding, 2005 ²⁷	Prospective Randomized Intervention study	97	65M, 32F	Mean: 26.9	PT Autograft	Unknown	Unknown	Unknown
Sarrafan, 2008 ²⁸	Randomized Comparative study	30	30M, 0F	Mean: 25 Range: 19-33	PT, QT Autografts	Unknown	26 Partial injuries of Medial Meniscus	Unknown
Sharifzadeh, 2017 ²⁹	Prospective Randomized Comparative study	100	100M, 0F	Mean: 26.45	HT Autograft	Unknown	None	Unknown
Case Series								
Bach, 2002 ³⁰	Case Series	20	14M, 6F	Mean: 32 (16-47)	PT autograft	Unknown	None	Mean: 16 months Range: 2 months-12 years

Calvisi 2008 ³¹	Case Series	58	46M, 12F	Median: 25	PT, HT	Unknown	Meniscal	Unknown
				Range: 15-52	Autograft		tears: 27	
							patients, focal	
							chondral	
							lesions: 12	
							patients,	
							Meniscal and	
							chondral	
							lesions: 8	
Morrissey, 2000 ³²	Case Series	23	16M, 7F	Mean: 30	PT Autograft	Not Reported	4 Partial	Mean: 48±57
							Meniscectomi	months
							es	
Saddemi, 1993 ³³	Case Series	50	Unknown	Mean: 22.1	PT Autograft	Unknown	Unknown	Unknown
					or Allograft			
Wilk, 1994 ³⁴	Case Series	50	34M, 16F	Mean: 24.5	Unknown	Not Reported	Unknown	Unknown
				Range: 15-52				
Witvrouw, 2001 ³⁵	Case Series	49	27M, 22F	Mean: 24.5	PT or HT	Unknown	Unknown	Unknown
				Range: 17-63	Autograft			

Table 3: Risk of Bias for Studies Relevant to Question #2 and Question #3³⁶

Study (Author, Year)	ROB Tool	Risk of Bias	Rationale
Benazzo, 2008 ²⁵	ROB-2 ³⁷	Low	Computer generated randomization and double-blind intervention/placebo;
			Adequate reporting of attrition; No reporting bias detected
Bordes 2017 ²¹	RoBANS ³⁸	High	Confounding variables present as there were significant differences between groups
			at baseline
Cappellino 2012 ⁴	ROB-2 ³⁷	Unclear	Lack of blinding and attrition status reported
Chau, 2012 ⁶	ROB-2 ³⁷	Unclear	Methods of allocation, concealment, blinding not stated; No reporting of attrition
			after randomization
Drechsler, 2006 ²²	RoBANS ³⁸	High	Significant sex differences and subject number between ACLR and uninjured
			control groups; No blinding stated
Ediz, 2012 ⁹	ROB-2 ³⁷	High	Detection bias due to knowledge of the allocated interventions by outcome
			assessment

E-11: 201010	DOD 237	Τ	
Felli, 2019 ¹⁰	ROB-2 ⁵⁷	Low	Simple randomization for allocation; Opaque envelopes for concealment; Grouping
			list only available to one individual who was not a subject or assessor; No patients
			lost after randomization; No reporting bias noted
Gramatikova, 2015 ¹⁹	ROB-2 ³⁷	High	Randomization status and methods (if performed) not stated; Nature of
			intervention/control resulted in bias regarding subject and assessor blinding
Hughes, 2019 ¹¹	ROB-2 ³⁷	High	Performance bias due to knowledge of the allocated interventions by participants
		-	and personnel during the study
Jarit, 2003 ¹²	ROB-2 ³⁷	High	Measurement bias due to patients measuring their own knee circumference due to
		Ū	knowledge of previous measurement values
Kaeding, 2005 ²⁷	ROB-2 ³⁷	High	Detection bias due to knowledge of the allocated interventions by outcome
			assessment; Attrition bias due to 33% attrition rate
Lentz, 2012 ²³	RoBANS ³⁸	High	Self-report measures used for numerous outcomes in the study including return to
			sport
Lindstrom, 2015 ¹³	ROB-2 ³⁷	High	Lack of blinding of subjects; Loss of follow-up in the treatment group
Madadi, 2010 ¹⁴	ROB-2 ³⁷	High	Reporting bias due to the presence of conflicting measures of stability but the
			authors reported favorable stability in the case group
Mayr, 2010 ¹⁵	ROB-2 ³⁷	High	Performance bias due to knowledge of the allocated interventions by participants
			and personnel during the study; Detection bias due to knowledge of the allocated
			interventions by outcome assessment; Attrition bias due to amount, nature, or
			handling of incomplete outcome data
Morrissey, 2000 ³²	RoBANS ³⁸	High	Subjects underwent various procedures performed by three different surgeons
		Ũ	among five different sites; Blinding of assessors and attrition rate unclear
Ruffilli, 2015 ¹⁶	ROB-2 ³⁷	High	Performance and detection bias due to lack of blinding
Sharifzadeh, 2017 ²⁹	ROB-2 ³⁷	Unclear	Methods of allocation, concealment, blinding not stated; No reporting of attrition
			after randomization
Straw, 2003 ¹⁷	ROB-2 ³⁷	Unclear	Lack of clarity regarding participant blinding and allocation concealment

Table 4: Effusion Method(s) and Measurement Averages**

Circumferential Measurement						
Study (Author, Year)	Comparison (If Applicable)	Measurement Time and Value				
Aydogdu, 2017 ²⁴	Difference from Contralateral Limb	8 Weeks: Mean: 0.93 cm ±0.24 cm				
Boguszewski, 2013 ²	Difference from Contralateral Limb	1 Week: Mean: Intervention: 1.16 cm; Control: 1.4 cm				
_		2 Weeks: Mean: Intervention: 0.84 cm; Control: 1.2 cm				

		3 Weeks: Mean: Intervention: 0.57 cm; Control: 1.0 cm
		4 Weeks: Mean: Intervention: 0.33 cm; Control: 0.8 cm
Bordes, 2017 ²¹	Difference from Contralateral Limb	32.4±3.4 days (~5 Weeks): Total Mean: 0.9±0.6 cm
Cappellino, 2012 ⁴	Difference from Contralateral Limb	1 Month (~4 Weeks): Mean: Intervention: 1.5±0.4 cm; Control: 2.1±0.7 cm; Total:
		1.8±0.62
		3 Months (~13 Weeks): Mean: Intervention: 0.2±0.3 cm ; Control: 0.9±0.4 cm;
		Total: 0.55±0.48
		6 Months (~26 Weeks): Mean: Intervention: 0.1±0.2 cm; Control: 0.2±0.3 cm;
		Total: 0.15±0.25
Chan, 2017 ⁵	None	1 Week: Mean: Intervention: 39.43±3.43 cm; Control: 40.57±3.14 cm
		2 Weeks: Mean: Intervention: 38.23±2.89 cm; Control: 39.36±2.94 cm
		6 Weeks: Mean: Intervention: 37.02±3.12 cm; Control: 38.34±3.44 cm
Chau, 2012 ⁶	Difference from Pre-operative	1 Day: Mean: Intervention: 1.56±1.3 cm; Control: 3.0±1.1 cm
	Measurement	2 Days: Mean: Intervention: 1.63±1.5 cm; Control: 2.63±0.95 cm
		2 Weeks Mean: Intervention: 1.0±1.6 cm; Control: 2.85±1.1 cm
		6 Weeks: Mean: Intervention: 0.64±1.82 cm; Control: 1.46±1.9 cm
		12 Weeks: Mean: Intervention: 0.25±1.4 cm; Control: 0.5±1.8 cm
Dhawan, 2003 ⁸	None	1 Day: Mean: Intervention: 38.6±1.0 cm; Control: 39.7±1.0 cm
		2 Days: Mean: Intervention: 43.5±0.9 cm; Control: 44.8±0.8 cm
		3 Days: Mean: Intervention: 44.4±0.9 cm; Control: 45.6±0.9 cm
		4 Days: Mean: Intervention: 44.0±1.0 cm; Control: 45.2±0.9 cm
		5 Days: Mean: Intervention: 43.8±1.0 cm; Control: 44.7±0.9 cm
		6 Days: Mean: Intervention: 43.1±1.1 cm; Control: 44.6±0.9 cm
		1 Week: Mean: Intervention: 43.9±1.1 cm; Control: 44.3±1.0 cm
Ediz, 2012 ⁹	Difference from Contralateral Limb	1 Day: Mean: Intervention: 1.9±1.0 cm; Control: 1.6±0.8 cm; Total: 1.75±1.4
		1 Week: Mean: Intervention: 1.7±1.2 cm; Control: 3.4±1.5 cm; Total: 2.55±1.57
		2 Weeks: Mean: Intervention: 1.1±1.2 cm; Control: 2.5±1.3 cm; Total: 1.8±1.4
		8 Weeks: Mean: Intervention: 0.4±0.5 cm; Control: 1.5±0.6 cm; Total: 0.95±0.76
		12 Weeks: Mean: Intervention: 0.2 ± 0.8 cm; Control: 0.8 ± 0.9 cm; Total: 0.5 ± 0.88
		6 Months (~26 Weeks): Mean: Intervention: 0.1±0.2 cm; Control: 0.3±0.4 cm;
10		Total: 0.2±0.325
Felli, 2019 ¹⁰	Difference from Contralateral Limb	1 Day: Mean: Intervention: 14.6±11.6 cm; Control: 14.2±11.5 cm
		1 Week: Mean: Intervention: 19.6±17.1 cm; Control: 26.2±14.6 cm

	15 Days (~2 Weeks): Mean: Intervention: 10.4±12.5 cm; Control: 16.2±12.3 cm
	1 Month (~4 Weeks): Mean: Intervention: 8.6±13.1 cm; Control: 9.6±11.6 cm
	3 Months (~13 Weeks): Mean: Intervention: 2.4±4.5 cm; Control: 1.0±2.9 cm
Difference from Contralateral Limb	1 Day: Mean: Intervention: 2.67±0.21 cm; Control: 2.16±0.19 cm
	10 Days (~1 Week): Mean: Intervention: 0.98±0.19 cm; Control: 1.51±0.17 cm
Difference from Post-Operative	4 Weeks Post-Operative Baseline-: Mean: Intervention: -1.2±1.4 cm; Control: -
Baseline; None	0.1±0.19 cm
	8 Weeks Post-Operative Baseline: Mean: Intervention: -1.0±1.1 cm; Control:
	0.9±0.4 cm
	4 Weeks (No Comparison): Mean: Intervention: 37.9 cm; Control: 39.7 cm
	8 Weeks (No Comparison): Mean: Intervention: 38.1 cm; Control: 38.9 cm
Difference from Pre-operative	1 Day: Mean: Intervention: 2.8 cm ; Control: 4.9 cm
Measurement	2 Days: Mean: Intervention: 3.3 cm ; Control: 5.0 cm
	3 Days: Mean: Intervention: 2.3 cm ; Control: 4.8 cm
	1 Week: Mean: Intervention: 1.8 cm ; Control: 4.0 cm
	2 Weeks: Mean: Intervention: 1.6 cm ; Control: 3.4 cm
	3 Weeks: Mean: Intervention: 1.2 cm ; Control: 2.8 cm
	4 Weeks: Mean: Intervention: 1.1 cm ; Control: 2.6 cm
	5 Weeks: Mean: Intervention: 0.9 cm ; Control: 2.4 cm
	6 Weeks: Mean: Intervention: 0.8 cm ; Control: 2.2 cm
	7 Weeks: Mean: Intervention: 0.7 cm ; Control: 2.1 cm
	8 Weeks: Mean: Intervention: 0.6 cm ; Control: 1.8 cm
Difference from Contralateral Limb	Mid-Patellar Circumference Compared to Contralateral Limb
	1 Day: Mean: Hard brace: 1.5±0.9 cm; Soft Brace: 2.3±1.3 cm; Total: 1.9±1.53
	5 Days: Mean: Hard brace: 3.1±1.2 cm; Soft Brace: 1.6±1.1 cm; Total: 2.3±1.37
	12 Days (~2 weeks): Mean: Hard brace: 2.5±1.2 cm; Soft Brace: 0.4±1.1 cm; Total:
	1.4±1.55
	6 Weeks: Mean: Hard brace: 1.5±1.2 cm; Soft Brace: 0.2±0.6 cm; Total: 0.84±1.14
	12 Weeks: Mean: Hard brace: 0.8±0.9 cm; Soft Brace: 0.1±0.6 cm; Total: 0.45±0.83
	6 Months (26 Weeks): Mean: Hard brace: 0.7±0.8 cm; Soft Brace: 0.0±0.5 cm; Total: 0.35±0.75
	1 Year (52 Weeks): Mean: Hard brace: 0.5±0.8 cm; Soft Brace: 0.0±0.0 cm
	Difference from Contralateral Limb Difference from Post-Operative Baseline; None Difference from Pre-operative Measurement Difference from Contralateral Limb

		Proximal Patellar Margin Compared to Contralateral Limb
		1 Day: Mean: Hard brace: 1.7±1.0 cm; Soft Brace: 1.5±1.1 cm
		5 Days: Mean: Hard brace: 3.5±1.3 cm; Soft Brace: 2.8±1.1 cm
		12 Days (~2 weeks): Mean: Hard brace: 2.7±1.2 cm; Soft Brace: 1.7±1.2 cm
		6 Weeks: Mean: Hard brace: 1.2±1.1 cm; Soft Brace: 0.3±0.9 cm
Morrissey, 2000 ³²	Contralateral Limb (See appendix II)	2 Weeks: Mean: Injured Knee: 40.0±2.5 cm; Uninjured Knee: 38±2.5 cm
		6 Weeks: Mean: Injured Knee: 40.0±2.5 cm; Uninjured Knee: 38±2.5 cm
Rigon,1993 ²⁰	Difference from Contralateral Limb	5 Days: Mean: Intervention: 3.8 cm; Control: 3.3 cm
		15 Days (~2 Weeks): Mean: Intervention: 1.4 cm; Control: 1.7 cm
		45 Days (~6 Weeks): Mean: Intervention: 0.9 cm; Control: 1.2 cm
Ruffilli, 2015 ¹⁶	Difference from Pre-op	1 Day: Median Intervention: 2 cm; Control: 3 cm
	Measurement; None	1 Day: Median Intervention: 40.0 cm; Control: 40.0 cm
Saddemi, 1993 ³³	Difference from Contralateral limb	1 Week: Mean: Autograft: 2.8 cm; Allograft: 3.2 cm
		2 Weeks: Mean: Autograft: 1.2 cm; Allograft: 1.9 cm
		6 Weeks: Mean: Autograft: 1.0 cm; Allograft: 1.2 cm
		12 Weeks: Mean: Autograft: 0.2 cm; Allograft: 0.3 cm
Straw, 2003 ¹⁷	Difference from Contralateral Limb	2 Weeks: Mean: Intervention: 1.3±0.97 cm; Control: 1.9±0.16 cm
		4 Weeks: Mean: Intervention: 1.2±0.18 cm; Control: 1.1±0.14 cm
		6 Weeks: Mean: Intervention: 1.0±0.4 cm; Control: 1.1±0.34 cm
Witvrouw, 2001 ³⁵	Difference from Contralateral Limb	6 Weeks: Mean: Patellar Tendon Graft: 1.6±0.4 cm; Hamstring Tendon Graft:
		0.7±0.9 cm
		3 Months (~13 Weeks): Mean: Patellar Tendon Graft: 0.7±0.9 cm; Hamstring
		Tendon Graft: 0.6±0.6 cm
		6 Months (26 Weeks): Mean: Patellar Tendon Graft: 0.7±0.4 cm; Hamstring Tendon
		Graft: 0.2±0.5 cm
		12 Months (52 Weeks): Mean: Patellar Tendon Graft: 0.1±0.5 cm; Hamstring
		Tendon Graft: 0.1±0.4 cm
Zamarioli, 2008 ¹⁸	None	9 Weeks: Mean: Water Rehabilitation: 39.3±3.8 cm; Land Rehabilitation: 41±1.0 cm
Bulge/Stroke Test		
Study (Author, Year)	Measurement Scale	Measurement Time and Value
Feller, 2001 ²⁶	Bulge Sign - % of Subjects with	2 Weeks: Hamstring Tendon Group: No Effusion: 0%, Mild Effusion: 27%,
	None, Small, Moderate or Large	Moderate Effusion: 65%, Severe Effusion: 8%; Mean: 1.8 as scored by Mayr et al. ¹⁵
	Effusion (See Appendix II)	

		Patellar Tendon Group: No Effusion: 0%, Mild Effusion: 32% (10), Moderate
		Effusion: 49% (15), Severe Effusion: 19% (6); Mean: 1.9 as scored by Mayr et al. ¹⁵
		8 Weeks: Hamstring Tendon Group: No Effusion: 29% (10), Mild Effusion: 44%
		(15), Moderate Effusion: 27% (9), Severe Effusion: 0% (0); Mean: 0.97 as scored by
		Mayr et al. ¹⁵ ; Mean: 0.97 as scored by Mayr et al. ¹⁵
		Patellar Tendon Group: No Effusion: 19%, Mild Effusion: 58%, Moderate Effusion: 23%, Severe Effusion: 0%; Mean: 1.03 as scored by Mayr et al. ¹⁵
		4 Months (~17 Weeks): Hamstring Tendon Group: No Effusion: 62% (21), Mild
		Effusion: 35% (12), Moderate Effusion: 3% (1), Severe Effusion: 0% (0); Mean:
		0.41 as scored by Mayr et al. ¹⁵
		Patellar Tendon Group: No Effusion: 68% (21), Mild Effusion: 29% (9), Moderate
		Effusion: 3% (1), Severe Effusion: 0% (0);); Mean: 0.35 as scored by Mayr et al. ¹⁵
Lentz 2012^{23}	Bulge sign - Yes/No Determination	1 Vear (52 Weeks). Effusion Present in 10/94 Subjects
Lunz, 2012	(See Appendix II)	1 I car (52 Weeks). Enusion i resent in 10/2 i Subjects
Mayr 2010 ¹⁵	Bulge-Dancing Patella Signs (See	1 Day: Mean Hard Brace: 1.6±0.8: Soft Brace: 1.6±0.7: Total: 1.6±0.75
Wiuji, 2010	Appendix II)	5 Days: Mean Hard Brace: 2.3±0.7; Soft Brace: 1.8±0.8; Total: 2.04±0.79
		12 Days (2 weeks): Mean Hard Brace: 2.1±0.6; Soft Brace: 1.4±0.7; Total:
		1.75±0.74
		6 Weeks: Mean Hard Brace: 1.3±0.5; Soft Brace: 0.5±0.7; Total: 0.89±0.72
		12 Weeks: Mean Hard Brace: 0.4±0.5; Soft Brace: 0.2±0.5; Total: 0.30±0.51
		6 Months (26 Weeks): Mean Hard Brace: 0.2±0.4; Soft Brace: 0.1±0.3; Total:
		0.15±0.35
<u>^</u>		1 Year (52 Weeks): Mean Hard Brace: 0.1±0.3; Soft Brace: 0.2±0.3
Ediz, 2012 ⁹	Bulge-Dancing Patella Signs (See	1 Day: Mean: Intervention: 1.7±1.4; Control: 1.8±1.3; Total: 1.75±1.3
	Appendix II)	1 Week: Mean: Intervention: 1.8±1.3; Control: 2.4±1.7; Total: 2.1±1.74
		2 Weeks: Mean: Intervention: 1.4±1.4; Control: 2.2±1.5; Total: 1.8±1.47
		8 Weeks: Mean: Intervention: 0.6±0.7; Control: 1.8±1.3; Total: 1.2±1.18
		12 Weeks: Mean: Intervention: 0.6 ± 0.7 ; Control: 1.3 ± 0.8 ; Total: 0.95 ± 0.81
		6 Months (~26 Weeks): Mean: Intervention: 0.1±0.4; Control: 0.2±0.2; Total:
		0.15±0.31
Study (Author, Year)	Measurement Scale	Measurement Time and Value

Bach, 2002 ³⁰	MRI - Presence/Absence of Effusion	6 Months (~26 Weeks): Effusion Present in 6/20 Subjects	
		1 Year (52 weeks): Effusion Present in 1/10 Subjects	
Lindstrom, 2015 ¹³	CT Scan - Presence/Absence of	3 Months (~13 Weeks): Effusion Present in 36/53 Subjects	
	Effusion	12 Months (52 Weeks): Effusion Present in 13/52 Subjects	
	Ball	ottement/Dancing Patella	
Study (Author, Year)	Measurement Scale	Measurement Time and Value	
Calvisi, 2008 ³¹	Ballottement Test -	1 Week: Effusion Present in 30/58 Subjects	
	Presence/Absence of Effusion (See	3 Months (~13 weeks): Effusion Present in 0/58 Subjects	
	Appendix II)	6 Months (~26 Weeks): Effusion Present in 0/58 Subjects	
	\$	Subjective Knee Form	
Study (Author, Year)	Measurement Scale	Measurement Time and Value	
Benazzo, 2008 ²⁵	IKDC Knee Examination Form -	1 Month (~4 Weeks): Effusion Present in 11/60 Subjects	
	Presence or Absence of Effusion	2 Months (~9 Weeks): Effusion Present in 2/60 Subjects	
	(See Appendix II)	6 Months (~26 Weeks): Effusion Present in 0/60 Subjects	
Felli, 2019 ¹⁰	IKDC (See Appendix II)	1 Month (~4 Weeks): Mean: Intervention: 1.6±0.7; Control: 1.6±0.6	
		3 Months (~13 Weeks): Mean: Intervention: 1.2±0.4; Control: 1.2±0.4	
Kaeding, 2005 ²⁷	IKDC (% of Subjects with Effusion	1 Year (52 Weeks): Titanium Screw Group: Sedentary: 0%; Light: 0%; Moderate:	
	with Various Activity Intensity) (See	2.5%; Strenuous: 97.5%; Mean: 1.02 as scored by Felli et al. ¹⁰	
	Appendix II)	Phantom Screw Group: Sedentary: 0%; Light: 0%; Moderate: 2.3%; Strenuous:	
		97.7%; Mean: 1.02 as scored by Felli et al. ¹⁰	
Sarrafan, 2008 ²⁸	Modified Lysholm Knee Score (See	6 Months (26 Weeks): Score 10: 28/30, Score 5: 2/30. Score 0: 0/30	
	Appendix II)		
Sharifzadeh, 2017 ²⁹	Lysholm Knee Score - Swelling	1 Year (52 Weeks): 9.72/10	
	Sub-Section (See Appendix II)		
Wilk, 1994 ³⁴	Modified Noyes Form-Swelling	25.98 Week Average (Range 21-30 Weeks): Mean: 8.83/10±1.1; 10 Score: 32/50,	
	Sub-Section (See Appendix II)	8 Score: 17/50, 6 Score: 1/50	
		Other	
Study (Author, Year)	Measurement Method(s)	Measurement Time and Value	
Brandsson, 2001 ³	Subjective Visual Determination	2 Weeks: Effusion Present in 11/50	
	(Presence/Absence of Effusion)		
Christanell, 2012 ⁷	Un-named Standardized Scale (See	1 Week: Mean: Intervention: 3.3/4±0.5; Control: 3.3/4±0.9	
	Appendix II)		
Drechsler, 2006 ²²	Knee Volumeter (See Appendix II)	1 Month (~4 Weeks): 260 mL±27 mL	

		3 Months (~13 Weeks): 169 mL±27 mL	
Kaeding, 2005 ²⁷	Clinical Assessment (None or Mild)	1 Year (52 Weeks): Mild Effusion Present in 1/97 Subjects	
Madadi, 2010 ¹⁴	Subjective Visual Determination	1 Year (52 Weeks): Intervention: 13/22 (59%) excellent, 9/22 (41%) good, 0/22	
	(Excellent, Good, Moderate)	(0%) moderate; Control: 22/24 excellent (92%), 2/24 (8%) good, 0/24 (0%) moderate	

Table 5: Common Measurement Times

Common Measurement	Number of Studies
Times	
Day 1	86,8-10,12,15,16,19
Week 1	11 ^{2,5,7–10,12,15,19,31,33}
Week 2	13 ^{2,3,5,6,9,10,12,15,17,20,26,32,33}
Week 4	8 ^{2,4,10–12,17,22,25}
Week 6	9 ^{5,6,12,15,17,20,32,33,35}
Week 8	5 ^{9,11,12,24,26}
Week 26	94,9,15,25,28,30,31,34,35
Week 52	7 ^{13,15,23,27,29,30,35}

Table 6: Average Effusion±SD as Measured by Mid-patellar Circumference Compared to the Contralateral Limb**

	Mid-Patellar Circumferential Measurement with Comparison to Contralateral Limb (cm)
Day 1	$1.9 \pm 1.5^{9,15}$
Day 5-7	$2.4 \pm 1.4^{9.15}$
Week 2	$1.5 \pm 1.5^{9,15}$
Weeks 4-5	$0.91 \pm 0.61^{4,21}$
Weeks 6-8	$0.87 \pm 1.1^{9,15}$
Weeks 12-13	$0.47 \pm 0.84^{4,9,15}$
Week 26	$0.29 \pm 0.63^{4,9,15}$

Table 7: Average Effusion±SD as Measured by the Bulge/Stroke Test**

	Bulge/Stroke Test (See Appendix II)
Day 1	1.6±0.92 ^{9,15}
Day 5-7	2.1±1.1 ^{9,15}
Week 2	1.8±0.95 ^{9,15}
Weeks 6-8	0.97±0.87 ^{9,15}
Week 12	0.47±0.66 ^{9,15}
Week 26	0.15±0.34 ^{9,15}

Table 8: Effusion Correlations to Knee Related Outcomes and Between Group Differences**

Study	Between Group Significant	Between Group Outcomes	Association Stated
	Effusion Differences	with Significant Differences	
Benazzo, 2008 ²⁵	• Month 2: Faster resolution of effusion in the intervention group (p<0.05)	 Baseline-6 months: Mean changes of SF-36 Health Survey score in the I-ONE group were during follow-up (P<0.05) Month 1: Decreased use of NSAIDs in the intervention group (p<0.05) 	N/A
Cappellino, 2012 ⁴	• Month 3: Decreased circumferential measurement in the intervention group (p=0.057)	• 3 months: Improved Flexion Force (p=0.037)	 Swelling correlated to dynamic load asymmetry in the intervention group, R=0.909; p=0.005 Swelling correlated to knee flexion range of motion, R=0.866

			• Swelling was found not to be correlated to several measures in the following categories: baropodometric (static load), gait (walking speed, stride length, cadence, step width), clinical (trophism, pain, knee force), and quality of life (SF-36)
Chau, 2012 ⁶	 Day 1: Decreased circumferential measurement in the intervention group (p=0.009) Day 2: Decreased circumferential measurement in the intervention group (p=0.038) 	 Day 1: Significantly increased KOOS pain score (p=0.024) Day 1: Significantly increased KOOS ADLs (p=0.024) Day 1: Significantly increased KOOS sports (p=0.013) Day 2: Significantly increased KOOS pain score (p=0.012) Day 2: Significantly increased KOOS ADLs (p=0.007) Day 2: KOOS sports (p=0.003) Day 2: Significantly increased KOOS symptom score (p=0.018) 	N/A
Drechsler, 2006 ²²	• N/A	• N/A	• No association found between swelling and quadriceps strength or activation 1- and 3-months post ACLR
Ediz, 2012 ⁹	• Day 7: Decreased bulge/stroke scale score (p=0.024) and decreased	• Decreased pain in intervention group at week 1 (p=0.012), week	N/A

	 circumferential measurement (p=0.017) in the intervention group Day 14: Decreased bulge/stroke scale score (p=0.018) and decreased circumferential measurement (p=0.011) in intervention group Week 8: Decreased bulge/stroke scale score (p=0.002) and decreased circumferential measurement (p=0.022) in the intervention group Week 12: Decreased bulge/stroke scale score (p=0.013) and decreased circumferential measurement (p=0.036) in the intervention group 	 2 (p=0.031), week 8 (p=0.027), week 12 (p=0.033) Decreased extension deficit in intervention group at week 2 (p=0.039), Week 8 (p=0.039), Week 12 (p=0.036) Decreased thigh atrophy in the intervention group at week 2 (p=0.041), week 8 (p=0.032) Increased IKDC score in the intervention group at week 12 (p=0.036) 	
Felli, 2019 ¹⁰	 Day 7: Decreased patellar circumference in the intervention group (p=0.0015) Day 15: Decreased patellar circumference in the intervention group (p=0.0019) 	 Day 7: Increased ROM in the intervention group (p=0.0031) Day 7: Increased quadriceps strength in the intervention group (p=0.015) Day 7: Decreased pain (VAS) in the intervention group (p=0.011) Day 15: Increased quadriceps strength in the 	 Day 1: Strong correlation between patellar circumference and CY value, which is a measure of hemarthrosis (R=0.81, P<0.05) Week 1: Strong correlation between patellar circumference and CY value, which is a measure of hemarthrosis (R=0.73, P<0.05) Week 2: Strong correlation between patellar circumference and CY value, which is a measure of hemarthrosis (R=0.66, P<0.05)

		 intervention group (p=0.0089) Day 15: Decreased pain (VAS) in the intervention group (p=0.032) 	•
Hughes, 2019 ¹¹	 Week 0-4: Decreased circumference in the intervention group (p<0.05) Week 0-8: Decreased circumference in the intervention group (p<0.01) 	 Week 0-8: Increased IKDC score in the intervention group (p<0.01) Week 0-8: Increased LEFS score in the intervention group (p<0.01) Week 0-8: Increased KOOS (pain, symptoms, ADL, QOL) score in the intervention group (p<0.05) Week 0-8: Increased Lysholm score in the intervention group (p<0.05) Week 0-8: Increased SEBT score (anterior, posteromedial, posterolateral) in the intervention group (p<0.05) Week 0-8: Increased SEBT score (anterior, posterolateral) in the intervention group (p<0.05) Week 0-8: Increased knee flexion in the intervention group (p<0.01) 	N/A

		• Week 0-8: Increased	
		ROM difference in the intervention group $(p < 0.01)$	
Jarit, 2003 ¹²	• Significantly decreased knee circumference in the intervention group at all time points after day 0 (day 1, day 2, day 3, and week 1 through week 8)	 Significantly decreased pain in the intervention group at all time points after day 0 (day 1, day 2, day 3, and week 1 through week 9) Significantly decreased pain medication used in the intervention group at days 1-2 and days 6-10. 	N/A
Lentz, 2012 ²³	• Year 1: Significantly decreased knee effusion as measured by stroke test in return to sport group vs non- return to sport group	 Year 1: Improved Tegner change score in return to sport group (p<0.01) Year 1: Increased knee extensor torque in return to sport group (p=0.05) Year 1: Decreased average pain intensity in return to sport group (p=0.005) Year 1: Increased IKDC score in return to sport group (p<0.001) Year 1: Decreased Tampa Scale for Kinesiophobia score in return to sport group (p<0.001) 	 Knee joint effusion was a strong contributor to the discriminant function analysis (DFA) for return to sport vs non-return to sport at 1- year post ACLR, 0.519

Lindstrom, 2015 ¹³	N/A	 Year 1: decreased knee instability in return to sport group (p=0.004) Year 1: Increased return to sport rate (p=0.005) N/A 	 Month 3: Female patients with excessive joint effusion had
			significantly lower subjective one-year KOOS Sport and Recreation Activity subscale scores ($p = 0.003$) compared to male patients
Madadi, 2009 ¹⁴	• 1 year: Reduction of the effusion was better in the case group (double fixation) compared to the control group (single fixation) (p=0.01)	 Case group (double fixation) demonstrated significantly less anterior translation of the tibia as measured by KT-2000 measurement compared to the control group (single fixation) (p=0.016) Control group demonstrated significantly better pivot-shift results compared to the case group (p=0.02) No significant differences found between groups regarding knee extension or flexion lag 	• "Reduction of the effusion was better in the case group (double fixation). It seems that more stability and less anterior translation in the tibia are the main causes of the lower effusion."
Mayr, 2010 ¹⁵	• Day 5: Significantly decreased knee effusion as measured by hulge sign (n=	• Week 6: Increased IKDC in soft brace group (p=0.020)	N/A

	 0.002) and circumferential measurement (p=0.009) in the soft brace group Day 12: Significantly decreased knee effusion as measured by bulge sign (p<0.001) and circumferential measurement (p=0.001)in the soft brace group Week 6: Significantly decreased knee effusion as measured by bulge sign and circumferential measurement in soft brace group (p<0.001) Month 6: Significantly decreased knee effusion as measured by circumferential measurement in soft brace group (p=0.001) Month 12: Significantly decreased knee effusion as measured by circumferential measurement in soft brace group (p=0.001) 	 Month 6: Increased IKDC in soft brace group (p=0.029) Month 12: Increased IKDC in soft brace group (p=0.002) 	
Morrissey, 2000 ³²	N/A	N/A	• Greater reduction in effusion as assessed by circumferential measurement weakly correlated to decreased knee laxity ($r = -0.159$)
Ruffilli, 2015 ¹⁶	• Pre-Op to Day 1: Decreased knee circumference increase in the intervention group at	• Day 1: Decreased pain in the intervention group (p<0.0001)	N/A

	the patellar apex (p=0.013) and superior patellar pole (p=0.001)	• Day 1: Increased knee flexion ROM in the intervention group (p<0.0001)	
Sharifzadeh, 2017 ²⁹	• Year 1: Decreased swelling in Aperfix group as measured by the swelling component of the Lysholm knee score (p<0.01)	 Year 1: Decreased locking of the knee in Aperfix group (p=0.041) Year 1: Improved stair- climbing ability in Aperfix group (p<0.01) 	N/A
Straw, 2003 ¹⁷	• Week 2: Decreased knee circumference in the intervention group (p<0.002)	• Week 2: Increased knee ROM in the intervention group (p<0.002)	N/A

Bibliography

- 1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. *PLoS Med*. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097
- 2. Boguszewski D, Tomaszewska I, Adamczyk JG, Białoszewski D. Evaluation of effectiveness of kinesiology taping as an adjunct to rehabilitation following anterior cruciate ligament reconstruction. Preliminary report. *Ortop Traumatol Rehabil*. 2013;15(5):469-478. doi:10.5604/15093492.1084361
- 3. Brandsson S, Faxén E, Kartus J, Eriksson BI, Karlsson J. Is a knee brace advantageous after anterior cruciate ligament surgery? A prospective, randomised study with a two-year follow-up. *Scand J Med Sci Sports*. 2001;11(2):110-114. doi:10.1034/j.1600-0838.2001.011002110.x
- 4. Cappellino F, Paolucci T, Zangrando F, et al. Neurocognitive rehabilitative approach effectiveness after anterior cruciate ligament reconstruction with patellar tendon. A randomized controlled trial. *Eur J Phys Rehabil Med.* 2012;48(1):17-30.
- 5. Chan MC-E, Wee JW-J, Lim M-H. Does kinesiology taping improve the early postoperative outcomes in anterior cruciate ligament reconstruction? A randomized controlled study. *Clin J Sport Med.* 2017;27(3):260-265. doi:10.1097/JSM.0000000000345
- 6. Chau JYM, Chan WL, Woo SB, et al. Hyaluronic acid instillation following arthroscopic anterior cruciate ligament reconstruction: a double-blinded, randomised controlled study. *J Orthop Surg (Hong Kong)*. 2012;20(2):162-165.

doi:10.1177/230949901202000205

- 7. Christanell F, Hoser C, Huber R, Fink C, Luomajoki H. The influence of electromyographic biofeedback therapy on knee extension following anterior cruciate ligament reconstruction: a randomized controlled trial. *Sports Med Arthrosc Rehabil Ther Technol.* 2012;4(1):41. doi:10.1186/1758-2555-4-41
- 8. Dhawan A, Doukas WC, Papazis JA, Scoville CR. Effect of drain use in the early postoperative period after arthroscopically assisted anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft. *Am J Sports Med*. 2003;31(3):419-424. doi:10.1177/03635465030310031601
- 9. Ediz L, Ceylan MF, Turktas U, Yanmis I, Hiz O. A randomized controlled trial of electrostimulation effects on effussion, swelling and pain recovery after anterior cruciate ligament reconstruction: a pilot study. *Clin Rehabil*. 2012;26(5):413-422. doi:10.1177/0269215511421029
- 10. Felli L, Revello S, Burastero G, et al. Single intravenous administration of tranexamic acid in anterior cruciate ligament reconstruction to reduce postoperative hemarthrosis and increase functional outcomes in the early phase of postoperative rehabilitation: A randomized controlled trial. *Arthroscopy*. 2019;35(1):149-157. doi:10.1016/j.arthro.2018.07.050
- Hughes L, Rosenblatt B, Haddad F, et al. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. *Sports Med.* 2019;49(11):1787-1805. doi:10.1007/s40279-019-01137-2
- 12. Jarit GJ, Mohr KJ, Waller R, Glousman RE. The effects of home interferential therapy on post-operative pain, edema, and range of motion of the knee. *Clin J Sport Med.* 2003;13(1):16-20. doi:10.1097/00042752-200301000-00004
- 13. Lindström M, Wredmark T, Wretling M-L, Henriksson M, Felländer-Tsai L. Post-operative bracing after ACL reconstruction has no effect on knee joint effusion. A prospective, randomized study. *Knee*. 2015;22(6):559-564. doi:10.1016/j.knee.2015.04.015
- 14. Madadi F, Sarmadi A, Kahlaee AH, et al. A new hybrid fixation method in ACL reconstruction surgery. *Eur J Orthop Surg Traumatol*. 2010;20(2):137-140. doi:10.1007/s00590-009-0497-8
- 15. Mayr HO, Hochrein A, Hein W, Hube R, Bernstein A. Rehabilitation results following anterior cruciate ligament reconstruction using a hard brace compared to a fluid-filled soft brace. *Knee*. 2010;17(2):119-126. doi:10.1016/j.knee.2009.07.002
- Ruffilli A, Buda R, Castagnini F, et al. Temperature-controlled continuous cold flow device versus traditional icing regimen following anterior cruciate ligament reconstruction: a prospective randomized comparative trial. *Arch Orthop Trauma Surg.* 2015;135(10):1405-1410. doi:10.1007/s00402-015-2273-z
- 17. Straw R, Colclough K, Geutjens GG. Arthroscopically assisted ACL reconstruction. Is a drain necessary? *Knee*. 2003;10(3):283-285. doi:10.1016/s0968-0160(02)00150-3
- 18. Zamarioli A, Pezolato A, Mieli E, Shimano A. The significance of water rehabilitation in patients with anterior cruciate

ligament reconstruction. *Physiotherapy*. 2008;16(2). doi:10.2478/v10109-009-0013-z

- 19. Gramatikova M. KINESIO TAPING EFFECT ON EDEMA OF KNEE JOINT. *Research in Kinesiology*. 2015;43(No. 2):220-223.
- 20. Rigon A, Viola R, Lonedo F. Continuous Passive Motion in Reconstruction of the Anterior Cruciate Ligament. *Journal of Sports Traumatology and Related Research*. 1993;15(4):187-192.
- 21. Bordes P, Laboute E, Bertolotti A, et al. No beneficial effect of bracing after anterior cruciate ligament reconstruction in a cohort of 969 athletes followed in rehabilitation. *Ann Phys Rehabil Med.* 2017;60(4):230-236. doi:10.1016/j.rehab.2017.02.001
- 22. Drechsler WI, Cramp MC, Scott OM. Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. *Eur J Appl Physiol*. 2006;98(6):613-623. doi:10.1007/s00421-006-0311-9
- 23. Lentz TA, Zeppieri G, Tillman SM, et al. Return to preinjury sports participation following anterior cruciate ligament reconstruction: contributions of demographic, knee impairment, and self-report measures. *J Orthop Sports Phys Ther.* 2012;42(11):893-901. doi:10.2519/jospt.2012.4077
- 24. Aydoğdu O, Sarı Z, Yurdalan US, Polat GM. The effects of an innovative technology applied as virtual rehabilitation on clinical outcomes in anterior cruciate ligament injury. *CBUP*. 2017;5(0):933. doi:10.12955/cbup.v5.1047
- 25. Benazzo F, Zanon G, Pederzini L, et al. Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: prospective, randomized and double blind study. *Knee Surg Sports Traumatol Arthrosc.* 2008;16(6):595-601. doi:10.1007/s00167-008-0519-9
- 26. Feller JA, Webster KE, Gavin B. Early post-operative morbidity following anterior cruciate ligament reconstruction: patellar tendon versus hamstring graft. *Knee Surg Sports Traumatol Arthrosc.* 2001;9(5):260-266. doi:10.1007/s001670100216
- 27. Kaeding C, Farr J, Kavanaugh T, Pedroza A. A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. *Arthroscopy*. 2005;21(2):147-151. doi:10.1016/j.arthro.2004.09.012
- 28. Sarrafan N, Mehdinasab SA. Anterior cruciate ligament reconstruction using patellar tendon and quadriceps tendon: A comparative study. *Pak J Med Sci*. 2008;24(3):416-419.
- Sharifzadeh SR, Shahrezaee M, Okhovatpour MA, Boroujeni SA, Banasiri M. Comparison of the effectiveness of femoral fixation techniques (Aperfix and Endobutton) in anterior cruciate ligament surgery. *AMJ*. 2017;10(9). doi:10.21767/AMJ.2017.3138
- 30. Bach FD, Carlier RY, Elis JB, et al. Anterior cruciate ligament reconstruction with bioabsorbable polyglycolic acid interference screws: MR imaging follow-up. *Radiology*. 2002;225(2):541-550. doi:10.1148/radiol.2252010357
- 31. Calvisi V, Lupparelli S. C-reactive protein changes in the uncomplicated course of arthroscopic anterior cruciate ligament reconstruction. *Int J Immunopathol Pharmacol.* 2008;21(3):603-607. doi:10.1177/039463200802100313
- 32. Morrissey MC, Hudson ZL, Drechsler WI, Coutts FJ, King JB, McAuliffe TB. Correlates of knee laxity change in early rehabilitation after anterior cruciate ligament reconstruction. *Int J Sports Med.* 2000;21(7):529-535. doi:10.1055/s-2000-7414

- 33. Saddemi SR, Frogameni AD, Fenton PJ, Hartman J, Hartman W. Comparison of perioperative morbidity of anterior cruciate ligament autografts versus allografts. *Arthroscopy*. 1993;9(5):519-524. doi:10.1016/s0749-8063(05)80398-6
- Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR. The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. *J Orthop Sports Phys Ther*. 1994;20(2):60-73. doi:10.2519/jospt.1994.20.2.60
- 35. Witvrouw E, Bellemans J, Verdonk R, Cambier D, Coorevits P, Almqvist F. Patellar tendon vs. doubled semitendinosus and gracilis tendon for anterior cruciate ligament reconstruction. *Int Orthop.* 2001;25(5):308-311. doi:10.1007/s002640100268
- 36. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. 2011;343:d5928. doi:10.1136/bmj.d5928
- 37. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019;366:14898. doi:10.1136/bmj.14898
- 38. Risk of Bias Assessment tool for Non-randomized Studies (RoBANS): Development and validation of a new instrument | Colloquium Abstracts. https://abstracts.cochrane.org/2011-madrid/risk-bias-assessment-tool-non-randomized-studies-robans-development-and-validation-new. Accessed April 5, 2020.