Author & Year Study Participants Outcomes Results & Conclusions Interventions Design Research Measures Question(s)/Purpo se Harbourne et al. Randomize Thirty-five infants Group 1 (standard of Intervention Infants in the • **2010**¹ with delays care): 1 x week for Groups: Perceptual Motor d longitudina determined by the eight weeks home *Center of* Group developed score on PDMS-2 program (mean age Do infants with 1 study, Pressure COP values closer CP or at risk for clinical of 1.5 SD below the 15.5months SD= 7) *Measures* by to typical infants CP respond trial mean correct age sitting on a force than the Home differently to two assigned to two Group 2: 2 x week for plate: Program group different intervention groups. 8-weeks (mean age 1. Length Infants in both 14.3 months SD = 3) intervention Comparison group Samples groups increased included perceptual-motor approaches (one of their GMFM standard of care Fifteen typically interventions Anteriorsitting subscale developing infants and the other Posterior score by an focused on as controls scoring Group 1: The home direction. average of 20 proprioception, no more than .5 SD program consists of 2. Length percentage points tactile, and below mean on the family-focused Samples COP AP -values training with pressure PDMS-2. Medialincrease in information) in caregiver training the Lateral variability over primary focus, use of comparison to direction. time for typically their typically the home 3 A developing developing peers environment, and measure infants, along of equipment to support with the with an increase development of sitting, static sitting a predictabi in regularity = independent focus of intervention. lity of COP in sitting?

	Group 2: The	the AP	increased postural
P	Perceptual Motor	direction	stability.
	Program is child-led,	4. A	• Infants in-home
	herapist and child	measure	program group
	nteractions are the	of	showed a
fe	ocus with child	predictabi	decrease in COP
1	problem-solving	lity of	AP variability and
	sitting posture,	COP in	increased in
	lynamic sitting	the ML	regularity $=$ less
e	encouraged touch	direction	exploration in
	cues to support errors.	COP data	sitting with
	Continuous	collected before	improved stability
	exploration by the	the intervention	(less dynamic)
	child encouraged.	and one month	• The typically
		after to detect a	developing group
		long-term change	and the
		in sitting ability.	perceptual-motor
			group
		Gross Motor	demonstrate
		Function	increased
		Measure Sitting	irregularity in the
		Section before	ML direction =
		and after the	improved ability
		intervention	to keep center of
		period.	mass over the
			base of support
		Control/Compari	during exploration
		son Group:	C

				COP data collected the beginning of sitting ability and then three months later.	 The home program group decreased variability in COP ML direction with greater regularity = less complicated strategies in functional sitting. 20% of infants in the home program crawled by the end of the intervention 40% of the infants in the perceptual- motor group crawled by the end of the intervention
Harborne et al. 2014 ² The purpose of this study is to examine the interaction and co-	Longitudin al Prospective Cohort	Twenty-eight typically developing infants and 16 infants with motor delays participated.	No intervention performed. Measures taken at three distinct sitting stages. Stage 1: Prop sit 30 seconds both arms	Center of Pressure (COP): Anterior- Posterior direction (regularity)	• All infant increased stability over time in sitting, as would be expected for infants in that

emergence of	All infants were	without falling,	Medial-Lateral	stage of
upright sitting	able to prop at least	momentary hands-free	directions	development.
postural control	sit for 30 seconds	sitting but returns to	(regularity)	• Infants with
and look time.	without falling	prop sitting		motor delays
Using "Look	(stage 1 sitting).		Look Time:	presented with
time" as a measure		Stage 2: Sits for 30	Defined as visual	more regularity
of cognitive	Typically	seconds without	fixing on an	and stability in
processing, with	developing infants	falling and without	object without	COP anterior and
motor skill	were at least 5-	the use of hands.	shifting gaze for	posterior
development and	months old, no	Reaching and looking	more than .5-	directions,
cognition linked	more than .5 SD on	around often causes	seconds and	indicating less
together, the	PDMS-2.	loss of balance — a	looking away is	exploration and
authors		transitional stage of	defined as loss of	discovery of
hypothesize that	Infants with motor	sitting.	visual fixation	strategies for
look time is not	delays were		more than 1.5-	postural control.
only dependent on	between 6 and 24-	Stage 3: Sits for more	seconds. Objects	Look time
neuron maturation	months of age,	than 5 minutes	directly in front	increased at stage
but is affected by	more than 1.5 SD	without falling. Infant	of the infant with	2 of sitting for
postural control	below the mean on	can reach for toys	no other object in	infants with motor
development.	the PDMS-2 for	independently with	view. An average	delays compared
	corrected age.	both hands without	was calculated	to typically
		loss of balance.	for all "looks."	developing infants
	Exclusion Criteria			who demonstrate
	for both groups was			a gradual decrease
	the diagnosis of			in look time from
	visual impairment.			stage 1 sitting to
				stage 3 sitting.

		T	
			• The author
			concludes that
			look time
			decreased with
			increasing sitting
			stability for all
			infants, as would
			be expected.
			Decreased look
			time offers
			opportunities to
			gather
			information from
			the environment,
			faster, increasing
			visual information
			processing.
			However, for
			infants with motor
			delays, look time
			increased in stage
			2 of sitting
			(hands-free sitting
			is developing),
			possibly
			indicating
			postural control
			linked to visual
			processing.

Hadders-Algra	Literature	Review of literature	No interventions	From the review	Component of typical
2013 ³	Review	included two	performed	of literature	reaching include:
		distinct groups of	-	outcomes used to	• 4-months of age
The purpose of the		infants, typically		assess postural	reaching
paper is to discuss		developing and		control included	movements result
the development		atypically		center of	in grasping with
of upper extremity		developing.		pressure (COP)	high variability
reaching ability		Atypically		measures and	• 4-6-months of age
and its association		developing infants		electromyogram	reaching
with postural		included a review		amplitude (EMG)	trajectory
control		of studies on both		measurements.	increases in
development in		high-risk and low-			smoothness with
infant typical and		risk pre-term infants and those			an increase in
atypical development.		with CP.			velocity and
development.		with Cr.			decreased
					corrections needed
					• 6-months of age
					and beyond reaching path is
					straighter and the
					role of vision
					increases
					 9-months of age
					and beyond
					anticipatory
					control emerges
					with the increase

		in somatosensory
		alpha-band
		activity.
		Components of atypical
		development of reaching:
		• Low-risk pre-term
		infants
		demonstrate
		initially increased
		reaching ability at
		4-months (supine)
		and 6-7-months
		(semi-reclined)
		High-risk infants
		present with
		delayed
		reaching/grasping
		and non-optimal
		kinematics at 6-
		months.
		Typical development of
		postural control:
		Dorsal muscles
		are active with
		body sways
		forward, and
		ventral muscles
		are active when

		 the body sways backward. Postural adjustments that are direction- specific are multisensory coming from 3 inputs: somatosensory, visual, vestibular. Postural control during reaching relies on anticipatory muscle contractions Atypical development of postural control: High-risk infants demonstrate delayed postural milestones (ie, sitting upright independent) and demonstrate
		demonstrate hyperextension of the neck, trunk,

		 and transient dystonia. Infants with CP demonstrate decreased sway path, decreased medial-lateral COP measures. Results likely due to increased secondary rigidity in an upright posture and decreased variations of movement in the frontal plane. Infants with CP have decreased repertoire of
		infants with developmental
		delay have moderately
		decreased in
		adjustments, typical infants
		have an extensive

					and flexible repertoire of adjustments, which is linked to increased strategies for postural control in movement.
Kyvelidou et al.	Cross-	Thirty-five full	Two experimental	Center of	• Infants later
2013 ⁴	sectional	term <i>typically</i>	sessions completed	pressure data:	diagnosed with
	study	developing infants,	with average of COP	Anterior-	CP demonstrated
Purpose of this		mean age 5-months	measures/scores from	Posterior	lower range of AP
study is to		(SD .55-months).	both sessions	direction (AP)-	linear direction
determine if			calculated and then	Linear	values compared
typical infants,		Six pre-term infants	compared among the		to infants both
per-term infants		later diagnosed	three groups.	Medial-Lateral	typically
with motor delays,		with CP, mean age		direction (ML)-	developing and
and infants		18-months (4.49-		Linear	those pre-term
diagnosed with		months).		A.D. 1'	with
Cerebral Palsy		Direction of the second		AP -non-linear	developmental
demonstrate differences on		Five <i>pre-term</i>		LyE ML -non-linear	delays.
		infants with motor			
postural control at		developmental		LyE	• No difference
the emergence of independent		<i>delays</i> , mean age 11.56-months		** or LyE =	between the 3
sitting (no		(1.18-months).		Lyaponuv	groups for ML
•		(1.10-111011115).			linear values.
supports)		Inclusion:		Exponent and is defined as	
				"measure of the	

• Full-term	rate at which	• Infants typically
infant born	nearby	developing
37-42 weeks	trajectories in	demonstrate
	state space	
gestation	1	higher LyE (AP
• PDMS-2	diverge." (cite)	and ML) values
score no		than children with
more than .5	LyE can be	CP.
SD from	thought of as	
mean	"variability"	• Children with CP
• 4-5months		demonstrate lower
of age		LyE values in ML
• Can sit up		direction
(with/witho		compared to both
ut hands for		infants typically
support)		developing and
Exclusion:		pre-term infants
• Pre-term		with
infants with		developmental
PDMS-2		delays.
score less		5
than 1.5SD		Bottom Line:
below mean		Infants with CP have less
Pre-term		excursion, less variety of
• Fle-terni infant older		movements in the AP
		direction. These values
than 2		indicate less freedom of
• Diagnoses		movement secondary
of visual		rigid spastic postures.
impairment,		Infants with CP
		infants with CP

		hip dislocation or subluxation more than 50%		demonstrate lower in non-linear mov (LyE) AP and ML direction due to decreased strategi during sitting to c COP pressure and therefore have les options for mover sitting.	rements es ontrol l s nents in
Dusing SC, 2016 ⁵ The purpose of this review article includes; a. Review of evidence around sensory informatio n used in first few months of life b. Discuss how young infants use sensory informatio	Literature review and author commentar y	Review of literature with both typically developing infants and pre-term infants with motor delays.	No intervention performed	Results and author conclusions from included the revie1. Variability errors in movement early infan contribute learning pr and increa strategies t postural comotor skil develop.2. Postural compresent be upright sit emerges.	studies w: y and t in ncy to rocesses sed for ontrol as ls ontrol is fore

n to modify motor		3. Direction specific muscle activation is present at 3-
behavior c. Highlight		months of age.4. Postural muscle
evidence on atypical		activation is present with
use of sensory,		reaching activities at 4-6-months of
motor, and		age
postural control in		5. Lack of variability in early
high risk		movements and
infants		postural control
born pre- term		may indicate atypical
term		development.
		6. Infants born pre-
		term have less
		postural
		complexities in first few weeks of
		life.
		7. Infants with less
		fidgety
		movements/decre
		ased generalized
		movements more
		likely to have

					 diagnoses of CP later in childhood. 8. Less infant movement cause less sensorimotor experiences which leads to less opportunity to learn new motor patterns.
Righetto Greco et	Cross-	Twenty-six full	No treatment	Segmental	Correlation Results:
al. 2019 ⁶	sectional	term infants	interventions	Assessment of	SATCo correlated
	study	broken into two	performed.	Trunk Control	with the supine
The purpose of		groups :6 and 7-		(SATCo):	and sitting sub-
this study is to		month-old.	Infants were evaluated	To determine	sections of the
investigate			using the SATCo and	level of trunk	AIMS (p=0.00)
segmental trunk		Twenty-six pre-	the AIMS.	control	and the total
control difference		term infants		(cephalocaudal)	AIMS score
between full term		broken into two	Comparisons were	each infant was	(p=0.00)
infants and pre-		groups: 6 and 7-	made between groups:	tested on a bench	• Pre-term infants
term infants		month-old.	Spearman r with	sitting with hips	at 7-months
during the			P=.05 and CI 95%. {r	and knees at 90	significant
development of		Inclusion:	= .2649 low, $.569$	degrees. Static,	correlations
sitting.		Full term infants	moderate, .789 high,	active, and	between SATCo
Additionally, this		had gestational age	.9-1.00 very high}	reactive control	and ALL
studies purpose is		between 37 and 41-	Effect size was	were tested	subsections and
to add new		weeks. Pre-term	calculated using	segmentally from	total score of the
knowledge about		infants were born	Cohens d $\{<.2 =$	head to pelvis to	AIMS: Prone,
segmental trunk			small, $>.2$ to $<.5 =$	determine child's	

less than 37-weeks level of control. moderate, >.5 =sitting, total score control. supporting new large} The trunk is p=0.00 and supine gestation age. broken down into treatments in early p=.04 and intervention to Exclusion. segments: head standing p=.03Infants with control, upper *Conclusion*: support segmental trunk control reported sensory or thoracic control. Segmental trunk control along with motor motor impairments, mid thoracic is highly correlated with skill development. gross motor performance. control. lower comorbidities Authors propose associated with thoracic control. Acquiring trunk control is critical to functional task that this study can premature birth. upper lumbar control, lower performance and affords increase knowledge around lumbar control. the infant increased how trunk control and full trunk interactions objects and contributes/influen the environment around control them. ces motor development. Alberta Infant Motor Scale Inter-group results: (AIMS): • Pre-term infants Assesses overall at 6-month-olds gross motor demonstrate less ability in 4 trunk control than distinct positions: full-term 6supine, sitting, months old's: Preprone, and term average standing. SATCo= 2 (upper Assesses antithoracic control) gravity versus *full-term* 6movements, month old's

weight bearing,

	1	TT		
			postural	SATCo= 3 (mid
		align	nment.	thoracic control)
			Intra	-group results:
			•	23.1% of pre-term
				6-month-olds can
				extend arms in
				prone and roll
				prone to supine
				but without
				rotation.
			•	
				7-month-olds can
				pivot in prone and
				roll with trunk
				rotation
			•	50.170 OI 1411
				term infants at 6-
				months can
				extend arms in
				prone
			•	30% of full- term
				7-month-olds
				rolling with trunk
				rotation
			•	0000/0011000
				term 7-month old
				rolling with trunk
				rotation

Saavedra et al. 2012 ⁷ The purpose of this study is to examine how postural control develops, segmentally during typical development, as the infant acquires independent sitting balance. The study focuses on how the child works against gravity to attain upright trunk control.	Longitudin al prospective cohort	 Eight infants participated, from 6-months from age 3 to 9-months. Inclusion: Born full term No pre, peri, post-natal complicatio ns No known neurologic or musculo- skeletal abnormalitie s Control group: Same data and protocol collected from healthy young adults. 	No treatment intervention performed. Participating infants evaluated 2 x per month for 6-months for data collection.	Electromyograph y (EMG) along with kinematic data collected at 4 distinct points of trunk support given to the infant. An external support device, and a pelvic strap, supported the infant at: 1. Axillae 2. Midribs 3. Waist 4. Hips Spinous process C7 was used as an orientation marker. Video recording and kinematic data collected x 3 minutes at each trunk segment.	 The data resulted in the following trends during the 6-month data collection period: Muscle activation and movements changed from erratic to anticipatory in both the anterior-posterior axis and medial-lateral axis. C7 angles changed with levels of support, and have a U-shape curve to them. Variability of movement increased, then decreased, then increases as trunk stability segmentally improves. Flexor/extensor muscle pair and
--	---	---	--	---	--

		Muscle activation	bilateral extensor
		patterns collected	pairs decreased
		during the 4	when lower levels
		different	of support are
		segments of	needed.
		support at each	Decreased co-
		data collection	activation in
		point.	muscle pairs as
		point.	infant gains
			upright sitting
			control.
			• Stage-like
			changes of
			postural control
			were found on a
			continuum:
			Stage one= "slow
			collapse" – at 3-4 months
			infant is not able to
			respond to perturbation
			and collapses into
			gravity. No organized
			muscle activation is
			present.
			1
			Stage two= "rise and
			fall"- infant makes visible
			attempts to right
			attempts to right

	themselves vertically, then fall away from midline in opposite direction.
	Stage three = "wobbling"- infant makes postural corrections, wobbling around a set point.
	Stage four = "upright control" -infant more interactive with environment, spends most of the time aligned vertically, use more range of motion (<variability) than in previous 'wobble' stage.</variability)

Pin et al. 2019 ⁸	Longitudin	Two groups:	No treatment	Outcome	The statistical results
P III et al. 2019	Longitudin	Two groups:			
The second of	al Duo on estimo	Thirty-one pre-term	intervention	Measures:	indicate that pre-term and
The purpose of	Prospective	infants and thirty	performed. In both	GUEG SUS	full-term infants had
this study was to	Cohort	full-term infants	groups monthly	SATCo: sitting	statistically significant
examine trunk	Pilot Study	participated in the	postural assessments	postural control	differences in their
control from 4-		study.	using the SATco was	tested	SATCo scores (p < .006)
months to 12-			performed from 4 to	segmentally from	at 4,7,8,9,11, and 12-
months and		Inclusion:	12-months (corrected	head to pelvis	months of age.
compare pre-term		• Pre-term	age). A gross motor	moving from:	As expected SATCo
and full-term		infants born	assessment using the	1. Shoulder	scores increase with age
infants.		less than 30-	AIMS was performed	girdle	in both groups.
Additionally, the		weeks	at four, eight, and 12-	2. Axillae	Statistically significant
authors wanted to		gestation.	months of age	3. Inferior	differences found
investigate how		• Full-term	(corrected age).	scapula	between the two groups
segmental control		infants born		4. Lower	on the AIMS at 4-months
of the trunk		more than		ribs	in the supine sub-test and
correlated with		37-weeks		5. Below	at 12-months in the
gross motor		gestation.		ribs	stand-sub test and the
development.		8		6. Pelvis	total overall score at 12-
1		Exclusion:		7. No	months.
		Known		supports	The SATCo and the
		congenital		11	AIMS were correlated
		abnormalitie		AIMS: norm-	(Spearman's rho) at:
		s, and		referenced	1. 8-months SATCo
		genetic		standardized	moderate
		syndromes		assessment of	correlation with
		in either		gross motor	AIMS supine and
		group.		development for	sit sub-tests, and
		group.		infant's birth to ~	total score

18-months or	1. 12-months
onset of	SATCo moderate
independent	correlations with
walking.	AIMS supine
	subtest
*Both testes were	(static/active), sit
video recorded	(static, active,
and a second	reactive), stand
tester rated each	(active/reactive),
child using the	and total score
video.	(static/active/reac
	tive)
	,
	Conclusions:
	• Vertical
	segmental trunk
	control develops
	in a cephalo-
	caudal pattern for
	all infants.
	• Static and active
	trunk control
	develops before
	reactive trunk
	control for full-
	term infants.
	 Increasing
	SATCo level of

	r	
		trunk control
		takes longer to
		develop for pre-
		term infants.
		Rapid trunk
		control develops
		for full-term
		infants 6-9
		months, with full
		static/active
		control by 9-
		months and
		reactive control
		by 12-months.
		5
		• Pre-term infants
		develop full
		active static and
		active trunk
		control by 12-
		months and
		reactive control is
		sometime beyond
		12-months (study
		did not go beyond
		12-months of
		age).

		Correlation
		between neutral
		vertical segmental
		trunk control and
		motor skills in
		supine and sitting
		suggest that
		segmental trunk
		control and motor
		function are
		interdependent.
		• Findings support
		maximizing
		therapy and
		focusing on
		outcomes that
		relate to upright
		trunk control at an
		early age.
		• The SATCo
		allows the
		clinician to
		identify the
		segment at which
		the infant has
		attained trunk
		control or has
		poor trunk control

				 and target interventions at this segmental level. Information around trunk control segmental level can support decisions around manually support level or justify use of equipment to support upright sitting.
--	--	--	--	---

Pin et al. 2019 ⁹	Longitudin	Two groups:	No treatment	Outcome	Results:
	al	Thirty-one pre-term	intervention.	Measures:	• SATCo static,
The purpose of	Prospective	infants and thirty	Assessments with the		active, and
this study is to	Cohort	full-term infants	SATCO and the	<i>SATCo</i> : sitting	reactive non-
explore the	Pilot Study	participated in the	AIMS performed at	postural control	significantly
correlations		study.	4,8, and 12-months of	tested	correlated with
between gross			age (corrected age) at	segmentally from	AIMS scores at 4-
motor skills in		Inclusion:	infant home.	head to pelvis	months.
prone, supine,		• Pre-term		moving from:	Moderate
sitting and		infants born		1. Shoulder	correlation infants
standing in young		less than 30-		girdle	at 8-months and
infants and		weeks		2. Axillae	12-months with
segmental trunk		gestation.		3. Inferior	sitting and
control.		• Full-term		scapula	standing sub test
		infants born		4. Lower	items.
		more than		ribs	~
		37-weeks		5. Below	Conclusions:
		gestation.		ribs 6. Pelvis	This preliminary data
				7. No	demonstrates correlation
		Exclusion:			of trunk control and
		• Known		supports	motor skill development infants 8 to 12-months.
		congenital abnormalitie		AIMS: norm-	Correlations were
				referenced	considered fair or
		s, and		standardized	moderate. Other factors
		genetic syndromes		assessment of	are also at play during
		in either		gross motor	this motor skill
		group.		development for	development time period.
		Broup.		infant's birth to ~	Indicates further studies

			18-months or onset of independent walking.	with kinematic measurements needed to build upon this preliminary data.
Rachwani et al.	Twenty-two infants	The intervention	Outcomes:	Results:
2017 ¹⁰	between 6.4 and 8.8-months of age,	included testing the infants responds to a	• Angla of	 infant sit on a horizontal flat
The purpose of	typically	movable wooden	• Angle of the <i>trunk</i>	surface (0°) with
this study was to	developing and	slope – forward slants	to thigh	a light forward
examine	born at term	and backward slants.	from	lean, trunk-thigh
behavioral	included in the	Slant of the surface	starting	angles = 70.3° to
flexibility in	study.	started at 0 degrees	position	88.6°.
sitting to various		(flat) and increased by	(0°) , at	• Infant age
changes in the	Inclusion:	2°, for a total of 4-	each 2°	predicted
support surface.	Infant able to sit in	seconds at each	angle	baseline,
Additionally, the	a V-sit for 30-	increment, until the	until	horizontal trunk-
authors	seconds with toy in	infant lost balance.	infant	thigh angle.
investigated if	hands and required	The infant's legs were	loses	Older infants sat

more experienced sitters had more adaptability or had more stable posture and balance to change in support surface than less experienced sitters (often younger infants).	no hand support to stay upright. Average # of days from onset of sitting ability = 36.0-days (SD 21.7) <i>Exclusion</i> : Born pre-term or with a known medical condition.	in a "V" with arms off the surface.	 balance. (video- analyzed) Steepest slope the infant kept balance at while slope was moving 	 with trunk closer to 90°, but increased sitting experience did not relate to baseline trunk- thigh angle. All infants kept balance on slope angle to 18° in the forward direction, and 6° in the backward direction. Average steepest slope going forward tolerated was 30° (SD =8°) forward, and 19° (SD=8°) backward. Infants tolerated forward slope better than backward slope. Forward
				direction slope tolerance

· · · · ·	ГР	
		correlated to
		sitting
		experience, but
		not in the
		backward
		direction:
		forward r=.51, p<
		.032 and
		backward r=.29,
		p=.209
		• Infants adapted
		their trunk-thigh
		angle depending
		on the direction
		of the slope:
		increased angle =
		leaning backward
		when slope was
		forward &
		decreasing angle
		= leaning
		forward when
		slope was
		backward.
		Conclusions:
		• Infants use
		reactive control to
		compensate for

		. 1 . 1
		perturbation and
		adapt sitting
		posture when
		slope changes.
		• Infants are more
		successful at
		keeping balance
		when slope is
		moving forward
		than backwards.
		Postural responses
		were immediate
		to the change in
		slope and
		incremental,
		demonstrating
		visual and
		proprioceptive
		pathway use to
		perceive the slant
		and respond with
		trunk/torso
		adjustments
		• Even early/new
		sitters are able to
		adapt to new
		novel balance
		challenges.

		I	
			 Solutions to
			balance
			challenges are not
			"fixed", rather
			infants are
			flexible in their
			ability to adapt to
			changes in the
			surface below
			them and is an
			integral part of
			typical
			development of
			upright sitting
			posture.
			• Learning to sit is
			not only about
			maintaining
			posture, but rather
			requires
			behavioral
			flexibility.

Surkar et al.	Retrospecti	Nineteen children	Interventions included	All Outcomes:	Results included:
2015 ¹¹	ve	with mean age	perceptual-motor		Mean "longest
	experiment	21.47-onths (SD=	training, or home	All children were	focused attention"
The purpose of	al cohort	10.54) diagnosed	programing, or body-	assessed with the	increased changed
this study was to		with mild to	weighted supported	outcomes below	significantly from
investigate if		moderate CP.	training PT 45-60in 1-	prior to	45.04 sec (SD =
focused attention			2 x per week for 8 to	intervention and	22.66) to 57.58
during play		12-males	12-weeks.	after	sec (SD =18.68),
improves as sitting		7-females			with $p < .02$ for
postural control				1. GMFM	those who gained
improves for		Inclusion:		2. Modified	independent
infants with		Diagnoses of mild		Play	sitting during the
Cerebral Palsy.		to moderate CP		Based	intervention.
An additional		using the CP		Assessme	Total focused
purpose was to		severity scale.		nt (PBA)	attention time
investigate if		Ability to sit with		– focused	changed
impaired sitting		support.		attention	significantly from
postural control				items	181.33 seconds
affect the		Exclusion:		tagged	(SD= 50.31) pre-
development of		Visual		and coded	intervention to
focused attention		impairments, hip		and	216.65 (SD=
for children with		dislocation, other		measured.	27.46) post-
CP?		neuromuscular		3. Sitting	intervention, with
		diagnosis, severe		subsectio	p < .009 for all
		cognitive deficits,		n of the	children.
		and quadriplegic		GMFM	Global focused
		CP.		pre-	attention changed
				interventi	for all children
				on, onset	

	of sitting	from 3.70 (SD =
	to sitting	.97) pre-
	achieved,	intervention to
	and then	4.27 (SD =.55), p
	post	< .007. Global
	interventi	focused attention
	on.	was rated on a
	4. Global	qualitative rating
	focused	scale 1 to 5.
	attention,	• Frequency (# of
	longest	times) of focused
	focused	attention
	attention,	decreased for all
	frequency	children 14.18
	of	(SD =3.79) to
	focused	13.56 (SD=4.51)
	attention	from pre to post
	was	intervention, with
	measured	a $p < .8$ and not
	at the	statistically
	beginning	significant. The
	of onset	authors took out
	of sitting	the mobile
	(early	children and
	stage	assess the
	sitting)	children just
	and then	sitting, and found
	again	significant results:
	once	14.20 (SD 4.27)

		independe nt sitting had been achieved.	 to 12.99 pre to post intervention, with a p < .004. All GMFM sitting subtest changed significantly from 23.21 points (SD= 8.33) to 38.47 (SD 11.41) pre to post intervention with a p < .001. Total Focused attention time increased significantly increased from 181.88 to 229.49, with p < .006 seconds for children not independently sitting pre-intervention to independent sitting post-intervention.
			Conclusions:

		• As sitting postural control advanced
		focused attention
		to objects during
		play increased
		linearly.
		Children who also
		became mobile,
		learning to crawl,
		showed a
		different trend of
		focused attention,
		with more breaks
		in between
		attention as
		mobility
		increased.
		• Linear
		improvement
		noted in focused
		attention time and
		global focused
		attention for
		children mobile
		and those who
		had learned to sit
		independent.

					 Children with CP who were mobile (crawling) had shorter but frequent bouts of focused attention, with increased total duration of focused attention. Impaired sitting postural control appears related to the development of focused attention, and focused attention appears to increase as sitting postural control improved.
Kyvelidou et al. 2018 ¹² The purpose of this study was to examine the effects of altering visual and	Cross- sectional design	Thirteen typically developing infants completed the study. The mean age was 259.69- days (SD 16.88- days).	One experimental session occurred. 1. Peabody Developmenta 1 Motor Scale- 2 2. Force plate data	Outcomes included data collection included: Center of Pressure data: a. Mean of linear	 Results included: Main effect (greater values) for the vision condition in the AP direction for range

259.69 days = 8.5collection: somatosensory anterior-Statistically ٠ inputs on sitting months infant in posterior significant greater posture in infants. sitting - 4 & medialvalues in AP Inclusion: different lateral direction for conditions vision and Peabody directions • Gross Motor a. Control b. Mean of somatosensory sit non-linear condition (*d*) Ouotient independe ApEN score within • Main effect for nt on force and Lye, .5 SD of the the vision CoD. plate *condition* for nonmean b. Somatosen c Linear Age linear LyE in the ٠ sorv testand non-ML direction between 7 infant sits linear and 9-onths Statistically ٠ on foam data Ability to sit significant greater ٠ pad compared values for vision independent c. Visual testwithout and infants sits hands (aka somatosensory while stage 3 of condition for nonlights are linear LyE ML sitting) off direction d. *Combinati* Exclusion: on of b and **Conclusions/Bottom** Peabody • С. Line Gross Motor The results of the study Ouotient of support the idea that >.5 SD vision plays a large role below the in infant postural control. mean This study found that in

Postural Control Development: Typical, Atypical, and At-Risk Infants and Toddlers

 Diagnoses of visual and hearing deficits Diagnosed musculoskel etal problem Acute ear infection or history of chronic ear infection, 	the lights off condition for both vision and vision/somatosensory conditions, infants presented with increase values in COP measures by increasing range for the AP direction and LyE in the ML direction. A large effect size suggests the change in values is significant. Visual information
tubes in ears, or history of dizziness • Medication that could alter balance	appears to have a large effect on the infants sitting posture and supports the idea that vision plays a large role in the acquisition of postural control. Altering somatosensory information did not appear to effect infant sitting posture in this study.

Bibliography

1. Harbourne RT, Willett S, Kyvelidou A, Deffeyes J, Stergiou N. A comparison of interventions for children with cerebral palsy to improve sitting postural control: a clinical trial. *Phys. Ther.* 2010;90(12):1881-1898. doi:10.2522/ptj.2010132.

- 2. Harbourne RT, Ryalls B, Stergiou N. Sitting and looking: a comparison of stability and visual exploration in infants with typical development and infants with motor delay. *Phys Occup Ther Pediatr* 2014;34(2):197-212. doi:10.3109/01942638.2013.820252.
- 3. Hadders-Algra M. Typical and atypical development of reaching and postural control in infancy. *Dev. Med. Child Neurol.* 2013;55 Suppl 4:5-8. doi:10.1111/dmcn.12298.
- 4. Kyvelidou A, Harbourne RT, Willett SL, Stergiou N. Sitting postural control in infants with typical development, motor delay, or cerebral palsy. *Pediatr. Phys. Ther.* 2013;25(1):46-51. doi:10.1097/PEP.0b013e318277f157.
- 5. Dusing SC. Postural variability and sensorimotor development in infancy. *Dev. Med. Child Neurol.* 2016;58 Suppl 4:17-21. doi:10.1111/dmcn.13045.
- 6. Righetto Greco AL, Sato NT da S, Cazotti AM, Tudella E. Is Segmental Trunk Control Related to Gross Motor Performance in Healthy Preterm and Full-Term Infants? *J Mot Behav* 2019:1-10. doi:10.1080/00222895.2019.1673694.
- 7. Saavedra SL, van Donkelaar P, Woollacott MH. Learning about gravity: segmental assessment of upright control as infants develop independent sitting. *J. Neurophysiol.* 2012;108(8):2215-2229. doi:10.1152/jn.01193.2011.
- 8. Pin TW, Butler PB, Cheung H-M, Shum SL-F. Longitudinal Development of Segmental Trunk Control in Full Term and Preterm Infants- a Pilot Study: Part I. *Dev. Neurorehabil.* 2019:1-8. doi:10.1080/17518423.2019.1648580.
- 9. Pin TW, Butler PB, Cheung H-M, Shum SL-F. Longitudinal Development of Segmental Trunk Control in Full Term and Preterm Infants- a Pilot Study: Part II. *Dev. Neurorehabil.* 2019:1-8. doi:10.1080/17518423.2019.1629661.
- 10. Rachwani J, Soska KC, Adolph KE. Behavioral flexibility in learning to sit. *Dev. Psychobiol.* 2017;59(8):937-948. doi:10.1002/dev.21571.
- 11. Surkar SM, Edelbrock C, Stergiou N, Berger S, Harbourne R. Sitting postural control affects the development of focused attention in children with cerebral palsy. *Pediatr. Phys. Ther.* 2015;27(1):16-22. doi:10.1097/PEP.0000000000097.
- 12. Kyvelidou A, Stergiou N. Visual and somatosensory contributions to infant sitting postural control. *Somatosens Mot Res* 2018;35(3-4):240-246. doi:10.1080/08990220.2018.1551203.